995 resultados para 208-1264B


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To date, the only Southern Hemisphere eolian grain-size record constructed for the early Paleogene comes from Deep Sea Drilling Project Site 215. Ten early Paleogene sediment samples from Site 215 were collected and processed to show that the existing eolian grain-size record at this site can be reproduced. Five samples each from Ocean Drilling Program Sites 1263 and 1267 were similarly examined to test the possibility of generating new Southern Hemisphere eolian grain-size records for the early Paleogene. Our results indicate that an eolian grain-size signal can be constructed at Walvis Ridge, although the record will be complicated by hemipelagic terrigenous inputs. Further, we assert that a record generated at a site located on the deep flanks of Walvis Ridge is particularly susceptible to hemipelagic influence.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The flow of deep-water masses is a key component of heat transport in the modern climate system, yet the role of deep-ocean heat transport during periods of extreme warmth is poorly understood. The present mode of meridional overturning circulation is characterized by deep-water formation in both the North Atlantic and the Southern Ocean. However, a different mode of meridional overturning circulation operated during the extreme greenhouse warmth of the early Cenozoic, during which time the Southern Ocean was the dominant region of deep-water formation. The combination of general global cooling and tectonic evolution of the Atlantic basins over the past ~55 m.y. ultimately led to the development of a mode of overturning circulation characterized by both Southern Ocean and North Atlantic deep-water sources. The change in deep-water circulation mode may, in turn, have affected global climate; however, unraveling the causes and consequences of this transition requires a better understanding of the timing of the transition. New Nd isotope data from the southeastern Atlantic Ocean indicate that the initial transition to a bipolar mode of deep-water circulation occurred in the early Oligocene, ca. 33 Ma. The likely cause of significant deep-water production in the North Atlantic was tectonic deepening of the sill separating the Greenland-Norwegian Sea from the North Atlantic.