986 resultados para 20-200
Resumo:
For many years the Torino Cosmogeophysics group has been studying sediment cores drilled from the Gallipoli Terrace in the Gulf of Taranto (Ionian Sea) and deposited in the last millennia. The gravity core GT90-3, in which the 18O series was measured, was drilled from the Gallipoli Terrace in the Gulf of Taranto (Ionian Sea) at 39°45'53''N, 17°53'33''E. It was extracted at a depth of 178 m and its length is 3.57 m. Thanks to its geographical location, the Gallipoli Terrace is a favourable site for climatic studies based on marine sediments, because of its closeness to the volcanically active Campanian area, a region that is unique in the world for its detailed historical documentation of volcanic eruptions. Tephra layers corresponding to historical eruptions were identified along the cores, thus allowing for accurate dating and determination of the sedimentation rate. The measurements performed in different cores from the same area showed that the sedimentation rate is uniform across the whole Gallipoli Terrace. We measured the oxygen isotope composition d18O of planktonic foraminifera. These measurements provided a high-resolution 2,200-year-long record. We sampled the core using a spacing of 2.5 mm corresponding to 3.87 years. Each sample of sediment (5 g) was soaked in 5% calgon solution overnight, then treated in 10% H2O2 to remove any residual organic material. Subsequently it was washed with a distilled-water jet through a sieve with a 150 µm mesh. The fraction > 150 µm was kept and oven-dried at 5°C. The planktonic foraminifera Globigerinoides ruber were picked out of the samples under a microscope. For each sample, 20-30 specimens were selected from the fraction comprised between 150 µm and 300 µm. The use of a relatively large number of specimens for each sample reduces the isotopic variability of individual organisms, giving a more representative d18O value. The stable isotope measurements were performed using a VG-PRISM mass spectrometer fitted with an automated ISO-CARB preparation device. Analytical precision based on internal standards was better than 0.1 per mil. Calibration of the mass spectrometer to VPDB scale was done using NBS19 and NBS18 carbonate standards. The strategic location of the drilling area makes this record a unique tool for climate and oceanographic studies of the Central Mediterranean.
Resumo:
Recent advances in coherent optical receivers is reviewed. Digital-Signal-Processing (DSP) based phase and polarization management techniques make coherent detection robust and feasible. With coherent detection, the complex field of the received optical signal is fully recovered, allowing compensation of linear and nonlinear optical impairments including chromatic dispersion (CD) and polarization-mode dispersion (PMD) using digital filters. Coherent detection and advanced optical modulation formats have become a key ingredient to the design of modern dense wavelength-division multiplexed (DWDM) optical broadband networks. In this paper, firstly we present the different subsystems of a digital coherent optical receiver, and secondly, we will compare the performance of some multi-level and multi-dimensional modulation formats in some physical impairments and in high spectral-efficiency (SE) and high-capacity DWDM transmissions, simulating the DSP with Matlab and the optical network performance with OptiSystem software.