983 resultados para 2.1
Resumo:
In this work we study the spontaneous breaking of superconformal and gauge invariances in the Abelian N = 1,2 three-dimensional supersymmetric Chern-Simons-matter (SCSM) theories in a large N flavor limit. We compute the Kahlerian effective superpotential at subleading order in 1/N and show that the Coleman-Weinberg mechanism is responsible for the dynamical generation of a mass scale in the N = 1 model. This effect appears due to two-loop diagrams that are logarithmic divergent. We also show that the Coleman-Weinberg mechanism fails when we lift from the N = 1 to the N = 2 SCSM model. (C) 2010 Elsevier B.V All rights reserved.
Resumo:
A few years ago, it was reported that ozone is produced in human atherosclerotic arteries, on the basis of the identification of 3 beta-hydroxy-5-oxo-5,6-secocholestan-6-al and 3 beta-hydroxy-5 beta-hydroxy-B-norcholestane-6 beta-carboxaldehyde (ChAld) as their 2,4-dinitrophenylhydrazones. The formation of endogenous ozone was attributed to water oxidation catalyzed by antibodies, with the formation of dihydrogen trioxide as a key intermediate. We now report that ChAld is also generated by the reaction of cholesterol with singlet molecular oxygen [O(2) ((1)Delta(g))] that is produced by photodynamic action or by the thermodecomposition of 1,4-dimethylnaphthalene endoperoxide, a defined pure chemical source of O(2) ((1)Delta(g)). On the basis of (18)O-labeled ChAld mass spectrometry, NMR, light emission measurements, and derivatization studies, we propose that the mechanism of ChAld generation involves the formation of the well-known cholesterol 5 alpha-hydroperoxide (5 alpha-OOH) (the major product of O(2) ((1)Delta(g))-oxidation of cholesterol) and/or a 1,2-dioxetane intermediate formed by O(2) ((1)Delta(g)) attack at the Delta(5) position. The Hock cleavage of 5 alpha-OOH (the major pathway) or unstable cholesterol dioxetane decomposition (a minor pathway, traces) gives a 5,6-secosterol intermediate, which undergoes intramolecular aldolization to yield ChAld. These results show clearly and unequivocally that ChAld is generated upon the reaction of cholesterol with O(2) ((1)Delta(g)) and raises questions about the role of ozone in biological processes.
Resumo:
The fragmentation mechanisms of singlet oxygen [O(2) ((1)Delta(g))]-derived oxidation products of tryptophan (W) were analyzed using collision-induced dissociation coupled with (18)O-isotopic labeling experiments and accurate mass measurements. The five identified oxidized products, namely two isomeric alcohols (trans and cis WOH), two isomeric hydroperoxides (trans and cis WOOH), and N-formylkynurenine (FMK), were shown to share some common fragment ions and losses of small neutral molecules. Conversely, each oxidation product has its own fragmentation mechanism and intermediates, which were confirmed by (18)O-labeling studies. Isomeric WOH lost mainly H(2)O + CO, while WOOH showed preferential elimination of C(2)H(5)NO(3) by two distinct mechanisms. Differences in the spatial arrangement of the two isomeric WOHs led to differences in the intensities of the fragment ions. The same behavior was also found for trans and cis WOOH. FMK was shown to dissociate by a diverse range of mechanisms, with the loss of ammonia the most favored route. MS/MS analyses, (18)O-labeling, and H(2)(18)O experiments demonstrated the ability of FMK to exchange its oxygen atoms with water. Moreover, this approach also revealed that the carbonyl group has more pronounced oxygen exchange ability compared with the formyl group. The understanding of fragmentation mechanisms involved in O(2) ((1)Delta(g))-mediated oxidation of W provides a useful step toward the structural characterization of oxidized peptides and proteins. (J Am Soc Mass Spectrom 2009, 20, 188-197) (C) 2009 Published by Elsevier Inc. on behalf of American Society for Mass Spectrometry
Resumo:
Proteins have been considered important targets for reactive oxygen species. Indeed, tryptophan (W) has been shown to be a highly susceptible amino acid to many oxidizing agents, including singlet molecular oxygen [O-2 ((1)Delta(g))]. In this study, two cis- and trans-tryptophan hydroperoxide (WOOH) isomers were completely characterized by HPLC/mass spectrometry and NMR analyses as the major W-oxidation photoproducts. These photoproducts underwent thermal decay into the corresponding alcohols. Additionally, WOOHs were shown to decompose under heating or basification, leading to the formation of N-formylkynurenine (FMK). Using O-18-labeled hydroperoxides ((WOOH)-O-18-O-18), it was possible to confirm the formation of two oxygen-labeled FMK molecules derived from (WOOH)-O-18-O-18 decomposition. This result demonstrates that both oxygen atoms in FMK are derived from the hydroperoxide group. In addition, these reactions are chemiluminescent (CL), indicating a dioxetane cleavage pathway. This mechanism was confirmed since the CL spectrum of the WOOH decomposition matched the FMK fluorescence spectrum, unequivocally identifying FMK as the emitting species.
Resumo:
In mammalian membranes, cholesterol is concentrated in lipid rafts. The generation of cholesterol hydroperoxides (ChOOHs) and their decomposition products induces various types of cell damage. The decomposition of some organic hydroperoxides into peroxyl radicals is known to be a potential source of singlet molecular oxygen [O(2) ((1)Delta(g))] in biological systems. We report herein on evidence of the generation of O(2) ((1)Delta(g)) from ChOOH isomers in solution or in liposomes containing ChOOHs, which involves a cyclic mechanism from a linear tetraoxide intermediate originally proposed by Russell. Characteristic light emission at 1270 nm, corresponding to O(2) ((1)Delta(g)) monomolecular decay, was observed for each ChOOH isomer or in liposomes containing ChOOHs. Moreover, the presence of O(2) ((1)Delta(g)) was unequivocally demonstrated using the direct spectral characterization of near-infrared light emission. Using (18)O-labeled cholesterol hydroperoxide (Ch(18)O(18)OH), we observed the formation of (18)O-labeled O(2) ((1)Delta(g)) [(18)O(2) ((1)Delta(g))] by the chemical trapping of (18)O(2) ((1)Delta(g)) with 9,10-diphenylanthracene (DPA) and detected the corresponding (18)O-labeled DPA endoperoxide (DPA(18)O(18)O) and the (18)O-labeled products of the Russell mechanism using high-performance liquid chromatography coupled to tandem mass spectrometry. Photoemission properties and chemical trapping clearly demonstrate that the decomposition of Ch(18)O(18)OH generates (18)O(2) ((1)Delta(g)), which is consistent with the Russell mechanism and points to the involvement of O(2) ((1)Delta(g)) in cholesterol hydroperoxide-mediated cytotoxicity.
Resumo:
Newly designed 2,1,3-benzothiadiazole-containing fluorescent probes with four excited state intramolecular proton transfer (ESIPT) sites were successfully tested in live cell-imaging assays using a confluent monolayer of human stem-cells (tissue). All tested dyes were compared with the commercially available DAPI and gave far better results. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The presence of paramagnetic species in the aqueous ring opening metathesis polymerizations of the exo,exo-7-oxabicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid monomer with RuCl(3) and K(2)[RuCl(5)H(2)O] compounds was studied using ESR techniques. It was observed that the intensities of the Ru(III) signals in the ESR spectra decrease on the time scale of the induction period so that the ROMP can take place. The intensity of the Ru(III) signal almost disappeared 50 min after reacting with K(2)[RuCl(5)H(2)O] and after 100 mm in the case of RuCl(3). Reactions of the cis-[Ru(NH(3))(4)(H(2)O)(2)](tfms)(3) and [Ru(NH(3))(5)H(2)O](tfms)(3) complexes with the monomer and different organic compounds representing the organic functions in the monomer (furan, norbornene, but-2-ene-1,4-diol and formic, acetic, oxalic and maleic acids) were also monitored by ESR and UV/vis spectra. It was deduced that the organic acids provide the disappearance of the Ru(III) signal. The proton NMR relaxation times of the residual water in D(2)O for reactions with oxalic acid suggested that the presence of paramagnetic ions in the solution decreases along with
Resumo:
Uma série de derivados quirais (e.e. > 99%) foram sintetizados a partir do meso- exo-(3R,5S)-3,5-dihidróximetilenotriciclo[5,2.1.02,6]decano com altos rendimentos, usando catálise enzimática (lipases) em reações de transesterificação. A resolução do respectivo diéster racêmico através da hidrólise catalisada com esterase (PLE) não forneceu o monoéster opticamente enriquecido; enquanto que a dessimetrização do anidrido usando indutores quirais (quinina e quinidina) resultou no monoéster opticamente enriquecido (e.e.≅ 60%). O respectivo amino-álcool protegido foi preparado. Alguns análogos inéditos de peptídeos restritos incorporados do triciclodecano foram sintetizados.
Resumo:
Neste trabalho, realizou-se a síntese do ceto-álcool pentaciclíco (±)-5, assim como o estudo de reatividade do grupo carbonila do mesmo frente a reações de oximação e redução. Realizou-se também a resolução enantiomérica do composto (±)-5 através de reação de transesterificação com acetato de vinila catalisada pela lipase da Candida rugosa. Altos excessos enantioméricos foram obtidos (>95%, RMN) tanto para o álcool (+)-5 quanto para o éster formado (-)-8. Sugere-se a existência de uma interconversão enantiomérica no composto (+)-5, devido a observação de mistura racêmica, quando o mesmo foi analisado por cromatografia gasosa em coluna quiral. Um mecanismo para tal interconversão, o qual envolve um rearranjo intramolecular, é proposto.
Resumo:
Este trabalho relata a síntese de uma série de novos ligantes quirais (+) e (-)-syn-1,3-aminoálcoois derivados do norbornano. Através da reação de transesterificação enzimática com a lípase da Candida rugosa em acetato de vinila do álcool racêmico 7,7-dimetoxi-1,4,5,6-tetraclorobiciclo[2.2.1]heptan-5-en-2-ol, (±)-3, foram obtidos os álcoois quirais (+)-3 e (-)-3 (Esquema 1). Através da reação de redução e descloração destes álcoois com Na0/NH3/etanol foram obtidos os respectivos álcoois (+)-4 e (-)-4 (Esquema 2). Os álcoois quirais (+)-4 e (-)-4 foram utilizados como produtos de partida para a síntese dos 1,3-aminoálcoois quirais (+)-9 e (-)-9 em 5 etapas. Deste modo, a partir destes aminoálcoois (9), foi possível sintetizar 12 novos compostos (Esquema 2), todos inétidos na literatura. Os 1,3-aminoálcoois 10, 11, 13, 14 e 15 foram empregados como catalisadores quirais na adição enantiosseletiva de ZnEt2 ao benzaldeído. Excelentes rendimentos e excessos enantioméricos (até 91%) foram obtidos. A relação entre a configuração absoluta do 1-fenilpropanol com a configuração do carbono ligado ao grupo hidroxila dos ligantes foi estudada e, de acordo, com a enantiosseletividade observada foi sugerido um mecanismo para a reação Os produtos com esqueleto ciclopentila são importantes compostos com potencial atividade biológica, fazendo parte da estrutura de prostaglandinas, agentes antitumorais e inibidores da glicosidase. Portanto, nós decidimos usar o acetato clorado quiral 2 para preparar ciclopentanóides quirais altamente funcionalizados. Para isso, o acetato clorado quiral 2 foi submetido à oxidação usando uma quantidade catalítica de RuCl3 anidro na presença de NaIO4 obtendo-se a dicetona 16 (Esquema 3). A dicetona 16 foi clivada com H2O2 em meio alcalino fornecendo os diácidos 17a e 17b, que foram esterificados in situ com excesso de CH2N2 para fornecer uma mistura do hidroxi e acetoxi diéster 18 e 19, respectivamente. A redução da mistura 18 e 19 ou da mistura 17a e 17b com BH3.THF fornece a lactona 20 com excelentes rendimentos.
Resumo:
We explore here the issue of duality versus spectrum equivalence in dual theories generated through the master action approach. Specifically we examine a generalized self-dual (GSD) model where a Maxwell term is added to the self-dual model. A gauge embedding procedure applied to the GSD model leads to a Maxwell-Chern-Simons (MCS) theory with higher derivatives. We show here that the latter contains a ghost mode contrary to the original GSD model. By figuring out the origin of the ghost we are able to suggest a new master action which interpolates between the local GSD model and a nonlocal MCS model. Those models share the same spectrum and are ghost free. Furthermore, there is a dual map between both theories at classical level which survives quantum correlation functions up to contact terms. The remarks made here may be relevant for other applications of the master action approach.
Resumo:
The existence of an interpolating master action does not guarantee the same spectrum for the interpolated dual theories. In the specific case of a generalized self-dual (GSD) model defined as the addition of the Maxwell term to the self-dual model in D = 2 + 1, previous master actions have furnished a dual gauge theory which is either nonlocal or contains a ghost mode. Here we show that by reducing the Maxwell term to first order by means of an auxiliary field we are able to define a master action which interpolates between the GSD model and a couple of non-interacting Maxwell-Chern-Simons theories of opposite helicities. The presence of an auxiliary field explains the doubling of fields in the dual gauge theory. A generalized duality transformation is defined and both models can be interpreted as self-dual models. Furthermore, it is shown how to obtain the gauge invariant correlators of the non-interacting MCS theories from the correlators of the self-dual field in the GSD model and vice-versa. The derivation of the non-interacting MCS theories from the GSD model, as presented here, works in the opposite direction of the soldering approach.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)