932 resultados para 14Carbon uptake rate, attributed to calcification, fractionated


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

v. 1-2. Canterbury tales -- v. 3. Troylus and Cryseyde, etc. -- v. 4. Romaunt of the rose, etc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

v. 1-2. Canterbury tales.- v. 3. Troylus and Cryseyde, etc.-v. 4. Romaunt of the rose, etc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Herbert Kynaston formerly Herbert Snow.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ascribed to Samuel Gott by S. K. Jones (in the Library, 3d ser., no. 3, v. 1, July 1910)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vigabatrin (VGB) is a transaminase inhibitor that elicits its anitepileptic effect by increasing GABA concentrations in the brain and retina. - Assess whether certain factors predispose patients to develop severe visual field loss. - Develop a sensitive algorithm for investigating the progression of visual field loss. - Determine the most sensitive clinical regimen for diagnosing VGB-attributed visual field loss. - Investigate whether the reports of central retinal sparing are accurate. The investigations have resulted in a number of significant findings: - The anatomical evidence in combination with the pattern of visual field loss suggests that the damage induced by VGB therapy occurs at retinal level, and is most likely a toxic effect. - The quantitative algorithm, designed within the course of this investigation, provided increased sensitivity in determining the severity of visual field loss. - Maximum VGB dose predisposes patients to develop severe visual field loss. - The SITA Standard algorithm was found to be as sensitive and significantly faster, in diagnosing visual field defects attributed to VGB, when compared to the Full Threshold algorithm. The Full Threshold was found to be the most repeatable between visits. - The normal SWAP 10-2 database provided an effective method of differentiating SWAP defects. - SWAP, FDT and the mfERG have increased sensitivity in detecting visual field loss attributed to VGB. The pattern of visual field loss from these investigations suggests that VGB produces a diffuse effect across the retina including subtle central abnormalities and more severe peripheral defects. - Abnormalities detected using the mfERG have suggested that VGB adversely affects the photoreceptors Müller, amacrine and ganglion cells in the retina. An urgent review of the manufacturers recommended maximum dose for VGB is required.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Vigabatrin (VGB) is an anti-epileptic medication which has been linked to peripheral constriction of the visual field. Documenting the natural history associated with continued VGB exposure is important when making decisions about the risk and benefits associated with the treatment. Due to its speed the Swedish Interactive Threshold Algorithm (SITA) has become the algorithm of choice when carrying out Full Threshold automated static perimetry. SITA uses prior distributions of normal and glaucomatous visual field behaviour to estimate threshold sensitivity. As the abnormal model is based on glaucomatous behaviour this algorithm has not been validated for VGB recipients. We aim to assess the clinical utility of the SITA algorithm for accurately mapping VGB attributed field loss. Methods: The sample comprised one randomly selected eye of 16 patients diagnosed with epilepsy, exposed to VGB therapy. A clinical diagnosis of VGB attributed visual field loss was documented in 44% of the group. The mean age was 39.3 years∈±∈14.5 years and the mean deviation was -4.76 dB ±4.34 dB. Each patient was examined with the Full Threshold, SITA Standard and SITA Fast algorithm. Results: SITA Standard was on average approximately twice as fast (7.6 minutes) and SITA Fast approximately 3 times as fast (4.7 minutes) as examinations completed using the Full Threshold algorithm (15.8 minutes). In the clinical environment, the visual field outcome with both SITA algorithms was equivalent to visual field examination using the Full Threshold algorithm in terms of visual inspection of the grey scale plots, defect area and defect severity. Conclusions: Our research shows that both SITA algorithms are able to accurately map visual field loss attributed to VGB. As patients diagnosed with epilepsy are often vulnerable to fatigue, the time saving offered by SITA Fast means that this algorithm has a significant advantage for use with VGB recipients.