993 resultados para 124-770B
Resumo:
Mineralogical and geochemical analyses were performed on 40 ash layers of Pleistocene to late Miocene age, recovered during Leg 124 in the Celebes and Sulu Seas (Sites 767, 768, and 769). They provide information on alteration processes related to burial diagenesis. The zonal distribution of secondary volcanic products emphasizes a major diagenetic change, characterized by the complete replacement of volcanic glass by an authigenic smectite-phillipsite assemblage, in tephra layers dated at 3.5-4 Ma. This diagenetic "event" occurs simultaneously in the two basins, and, on the basis of isotopic data, under low-temperature conditions. It is independent of distinct sedimentation rates and related to a relative quiescence of on-land volcanic activity. This period suggests a more uniform paleooceanographic situation having tectonic significance, and probably reflects a kinetic and environmental control of diagenetic reactions.
Resumo:
Celebes Basin sediments from Ocean Drilling Program Site 767 (Leg 124) containing both marine and terrestrial organic matter have been investigated through palynofacies and geochemical analyses. The main degradation processes affecting or having affected organic matter are recorded in the sedimentary column as shown by ammonium, phosphate and sulfate pore-water profiles, and by petrographic and geochemical analyses of sediments. In the upper part of the sedimentary section (down to 200 mbsf), the decrease of the ratio of total organic carbon to sulfur (TOC/S) with depth, generally related to the sulfate reduction process, is accompanied by an increase of framboidal pyrite content in the marine organic matter, and by an increasing amount of amorphous marine organic matter relative to the total organic matter. However, as the terrestrial organic input also varies with depth, dilution effects are superimposed on diagenesis. This continental supply affects the TOC/S ratio by increasing total organic carbon and decreasing the ability of the bulk organic matter to be metabolized through sulfate reduction. A positive relationship between the TOC/P ratio and the amount of degraded organic matter of marine origin clearly displays the effect of an organic source on the composition of the sediment. Each lithostratigraphic unit possesses its own characteristics in terms of composition and preservation of organic matter. The effects of diagenesis can only be appreciated within a single lithostratigraphic unit and mainly affect the less-resistant marine organic matter.