945 resultados para 1089


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Significance Reactive oxygen species (ROS) such as superoxide, hydrogen peroxide, and peroxynitrite are generated ubiquitously by all mammalian cells and have been understood for many decades as inflicting cell damage and as causing cancer by oxidation and nitration of macromolecules, including DNA, RNA, proteins, and lipids. Recent Advances A current concept suggests that ROS can also promote cell signaling pathways triggered by growth factors and transcription factors that ultimately regulate cell proliferation, differentiation, and apoptosis, all of which are important hallmarks of tumor cell proliferation and angiogenesis. Moreover, an emerging concept indicates that ROS regulate the functions of immune cells that infiltrate the tumor environment and stimulate angiogenesis, such as macrophages and specific regulatory T cells. Critical Issues In this article, we highlight that the NADPH oxidase family of ROS-generating enzymes are the key sources of ROS and, thus, play an important role in redox signaling within tumor, endothelial, and immune cells thereby promoting tumor angiogenesis. Future Directions Knowledge of these intricate ROS signaling pathways and identification of the culprit NADPH oxidases is likely to reveal novel therapeutic opportunities to prevent angiogenesis that occurs during cancer and which is responsible for the revascularization after current antiangiogenic treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stress has been identified as a common trigger for psychosis. Dopamine pathways are suggested to be affected by chronic and severe stress and to play an important role in psychosis. This pilot study investigates the potential relationship of stress and psychosis in subclinical psychotic experiences. It was hypothesized that single-nucleotide polymorphisms (SNPs) previously found to be associated with psychiatric disorders would be associated with both stress and subclinical psychotic experiences. University students (N=182) were genotyped for 17 SNPs across 11 genes. Higher stress reporting was associated with rs4680 COMT, rs13211507 HLA region, and rs13107325 SLC39A8. Reports of higher subclinical psychotic experiences were associated with DRD2 SNPs rs17601612 and rs658986 and an AKT1 SNP rs2494732. Replication studies are recommended to further pursue this line of research for identification of markers of psychosis for early diagnosis and intervention.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Research studies aimed at advancing cancer prevention, diagnosis, and treatment depend on a number of key resources, including a ready supply of high-quality annotated biospecimens from diverse ethnic populations that can be used to test new drugs, assess the validity of prognostic biomarkers, and develop tailor-made therapies. In November 2011, KHCCBIO was established at the King Hussein Cancer Center (KHCC) with the support of Seventh Framework Programme (FP7) funding from the European Union (khccbio.khcc.jo). KHCCBIO was developed for the purpose of achieving an ISO accredited cancer biobank through the collection, processing, and preservation of high-quality, clinically annotated biospecimens from consenting cancer patients, making it the first cancer biobank of its kind in Jordan. The establishment of a state-of-the-art, standardized biospecimen repository of matched normal and lung tumor tissue, in addition to blood components such as serum, plasma, and white blood cells, was achieved through the support and experience of its European partners, Trinity College Dublin, Biostor Ireland, and accelopment AG. To date, KHCCBIO along with its partners, have worked closely in establishing an ISO Quality Management System (QMS) under which the biobank will operate. A Quality Policy Manual, Validation, and Training plan have been developed in addition to the development of standard operating procedures (SOPs) for consenting policies on ethical issues, data privacy, confidentiality, and biobanking bylaws. SOPs have also been drafted according to best international practices and implemented for the donation, procurement, processing, testing, preservation, storage, and distribution of tissues and blood samples from lung cancer patients, which will form the basis for the procurement of other cancer types. KHCCBIO will be the first ISO accredited cancer biobank from a diverse ethnic Middle Eastern and North African population. It will provide a unique and valuable resource of high-quality human biospecimens and anonymized clinicopathological data to the cancer research communities world-wide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Delirium is a common underdiagnosed condition in advanced cancer leading to increased distress, morbidity, and mortality. Screening improves detection but there is no consensus as to the best screening tool to use with patients with advanced cancer. Objective To determine the incidence of delirium in patients with advanced cancer within 72 hours of admission to an acute inpatient hospice using clinical judgement and validated screening tools. Method One hundred consecutive patients with advanced cancer were invited to be screened for delirium within 72 hours of admission to an acute inpatient hospice unit. Two validated tools were used, the Delirium Rating Scale-Revised 98 (DRS-R-98) and the Confusion Assessment Method (CAM) shortened diagnostic algorithm. These results were compared with clinical assessment by review of medical charts. Results Of 100 consecutive admissions 51 participated and of these 22 (43.1%) screened positive for delirium with CAM and/or DRS-R-98 compared to 15 (29.4%) by clinical assessment. Eleven (21.6%) were identified as hypoactive delirium and 5 (9.8%) as subsyndromal delirium. Conclusion This study confirms that delirium is a common condition in patients with advanced cancer.While there remains a lack of consensus regarding the choice of delirium screening tool this study supports theCAMas being appropriate. Further research may determine the optimal screening tool for delirium enabling the development of best practice clinical guidelines for routinemedical practice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cell adhesion receptors play a central role in sensing and integrating signals provided by the cellular environment. Thus, understanding adhesive interactions at the cell-biomaterial interface is essential to improve the design of implants that should emulate certain characteristics of the cell's natural environment. Numerous cell adhesion assays have been developed; among these, atomic force microscopy-based single-cell force spectroscopy (AFM-SCFS) provides a versatile tool to quantify cell adhesion at physiological conditions. Here we discuss how AFM-SCFS can be used to quantify the adhesion of living cells to biomaterials and give examples of using AFM-SCFS in tissue engineering and regenerative medicine. We anticipate that in the near future, AFM-SCFS will be established in the biomaterial field as an important technique to quantify cell-biomaterial interactions and thereby will contribute to the optimization of implants, scaffolds, and medical devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Symptoms of depression can be recurrent or limited to one episode. This study discusses the prospective association between psychological health, measured as change in depression symptoms, and the risk of diabetes mellitus in Australian women. Methods Data obtained from the Mater-University of Queensland Study of Pregnancy. Depression was measured using the Delusions-Symptoms: States Inventory. To examine possible transitions over time, depression was grouped into four categories and assessed at different phases over the 21-year period. Multiple logistic regression models and sensitivity analysis to assess the robustness of our analytical strategy were performed. Results Three hundred and one women reported diabetes 21 years after the index pregnancy. Almost one-third of the women who reported depression symptoms continued to report these at a subsequent follow-up (FU) phase. About 1 in 20 women who had not reported depression symptoms at the 5-year FU did so at the subsequent 14-year FU. In prospective analyses, we did not find a significant association between diabetes and negative change (not depressed to depressed, at subsequent phase); however, for women with positive history of symptoms of depression and women with persistent symptoms, there was a 1.97-fold (95% confidence interval [CI]: 1.14–3.40) to 2.23-fold (95% CI: 1.09–4.57) greater risk of diabetes. Conclusions Our study suggests that an increased risk of diabetes is significantly associated with persistent depression symptoms. It highlights the importance of recognizing depression symptoms in terms of women's psychological wellbeing and thus provides a basis for targeting those most at risk.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have studied the borate mineral szaibelyite MgBO2(OH) using electron microscopy and vibrational spectroscopy. EDS spectra show a phase composed of Mg with minor amounts of Fe. Both tetrahedral and trigonal boron units are observed. The nominal resolution of the Raman spectrometer is of the order of 2 cm−1 and as such is sufficient enough to identify separate bands for the stretching bands of the two boron isotopes. The Raman band at 1099 cm−1 with a shoulder band at 1093 cm−1 is assigned to BO stretching vibration. Raman bands at 1144, 1157, 1229, 1318 cm−1 are attributed to the BOH in-plane bending modes. Raman bands at 836 and 988 cm−1 are attributed to the antisymmetric stretching modes of tetrahedral boron. The infrared bands at 3559 and 3547 cm−1 are assigned to hydroxyl stretching vibrations. Broad infrared bands at 3269 and 3398 cm−1 are assigned to water stretching vibrations. Infrared bands at 1306, 1352, 1391, 1437 cm−1 are assigned to the antisymmetric stretching vibrations of trigonal boron. Vibrational spectroscopy enables aspects of the molecular structure of the borate mineral szaibelyite to be assessed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sleep disturbance after mild traumatic brain injury (mTBI) is commonly reported as debilitating and persistent. However, the nature of this disturbance is poorly understood. This study sought to characterize sleep after mTBI compared with a control group. A cross-sectional matched case control design was used. Thirty-three persons with recent mTBI (1–6 months ago) and 33 age, sex, and ethnicity matched controls completed established questionnaires of sleep quality, quantity, timing, and sleep-related daytime impairment. The mTBI participants were compared with an independent sample of close-matched controls (CMCs; n=33) to allow partial internal replication. Compared with controls, persons with mTBI reported significantly greater sleep disturbance, more severe insomnia symptoms, a longer duration of wake after sleep onset, and greater sleep-related impairment (all medium to large effects, Cohen's d>0.5). No differences were found in sleep quantity, timing, sleep onset latency, sleep efficiency, or daytime sleepiness. All findings except a measure of sleep timing (i.e., sleep midpoint) were replicated for CMCs. These results indicate a difference in the magnitude and nature of perceived sleep disturbance after mTBI compared with controls, where persons with mTBI report poorer sleep quality and greater sleep-related impairment. Sleep quantity and timing did not differ between the groups. These preliminary findings should guide the provision of clearer advice to patients about the aspects of their sleep that may change after mTBI and could inform treatment selection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Longitudinal studies examining the risk of depressive and anxiety disorders associated with diabetes are limited. This study examined the association between diabetes and the risk of depressive and anxiety disorders in Australian women using longitudinal data. Methods Datawere froma sample of women who were part of anAustralian pregnancy and birth cohort study. Data comprised self-reported diabetes mellitus and the subsequent reporting of depressive and anxiety disorders. Mood disorders were assessed according to the Diagnostic and Statistical Manual of Mental Disorders, fourth edition, obtained from participants using Composite International Diagnostic Interview (CIDI)-Auto (WHO WMH-CIDI CAPI, version 21.1.3). Multiple regression models with adjustment for important covariates were used. Results Women with diabetes had a higher lifetime prevalence of any depressive and/or anxiety disorder than women without diabetes. About 3 in 10 women with diabetes experienced a lifetime event of any depressive disorder, while 1 in 2 women with diabetes experienced a lifetime event of any anxiety disorder. In prospective analyses, diabetes was only significantly associated with a 30-day episode of any anxiety disorder (odds ratio [OR] 1.53, 95% confidence interval [CI] 1.09–2.15). In the case of lifetime disorders, diabetes was significantly associated with any depressive disorder (OR 1.37, 95% CI 1.03–1.84), major depressive disorder (OR 1.36, 95% CI 1.01–1.85), and posttraumatic stress disorder (OR 1.42, 95% CI 1.01–2.02). Conclusions The findings suggest that the presence of diabetes is a significant risk factor for women experiencing current anxiety disorders. However, in the case of depression, the association with diabetes only held for women who had experienced past episodes, there was no association with current depression. This suggests that the evidence is not strong enough to support a direct effect of diabetes as a cause of mood disorders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Appropriate selection of scaffold architecture is a key challenge in cartilage tissue engineering. Gap junction-mediated intercellular contacts play important roles in precartilage condensation of mesenchymal cells. However, scaffold architecture could potentially restrict cell-cell communication and differentiation. This is particularly important when choosing the appropriate culture platform as well as scaffold-based strategy for clinical translation, that is, hydrogel or microtissues, for investigating differentiation of chondroprogenitor cells in cartilage tissue engineering. We, therefore, studied the influence of gap junction-mediated cell-cell communication on chondrogenesis of bone marrow-derived mesenchymal stromal cells (BM-MSCs) and articular chondrocytes. Expanded human chondrocytes and BM-MSCs were either (re-) differentiated in micromass cell pellets or encapsulated as isolated cells in alginate hydrogels. Samples were treated with and without the gap junction inhibitor 18-α glycyrrhetinic acid (18αGCA). DNA and glycosaminoglycan (GAG) content and gene expression levels (collagen I/II/X, aggrecan, and connexin 43) were quantified at various time points. Protein localization was determined using immunofluorescence, and adenosine-5'-triphosphate (ATP) was measured in conditioned media. While GAG/DNA was higher in alginate compared with pellets for chondrocytes, there were no differences in chondrogenic gene expression between culture models. Gap junction blocking reduced collagen II and extracellular ATP in all chondrocyte cultures and in BM-MSC hydrogels. However, differentiation capacity was not abolished completely by 18αGCA. Connexin 43 levels were high throughout chondrocyte cultures and peaked only later during BM-MSC differentiation, consistent with the delayed response of BM-MSCs to 18αGCA. Alginate hydrogels and microtissues are equally suited culture platforms for the chondrogenic (re-)differentiation of expanded human articular chondrocytes and BM-MSCs. Therefore, reducing direct cell-cell contacts does not affect in vitro chondrogenesis. However, blocking gap junctions compromises cell differentiation, pointing to a prominent role for hemichannel function in this process. Therefore, scaffold design strategies that promote an increasing distance between single chondroprogenitor cells do not restrict their differentiation potential in tissue-engineered constructs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The transfusion of platelet concentrates (PCs) is widely used to treat thrombocytopenia and severe trauma. Ex vivo storage of PCs is associated with a storage lesion characterized by partial platelet activation and the release of soluble mediators, such as soluble CD40 ligand (sCD40L), RANTES, and interleukin (IL)-8. An in vitro whole blood culture transfusion model was employed to assess whether mediators present in PC supernatants (PC-SNs) modulated dendritic cell (DC)-specific inflammatory responses (intracellular staining) and the overall inflammatory response (cytometric bead array). Lipopolysaccharide (LPS) was included in parallel cultures to model the impact of PC-SNs on cell responses following toll-like receptor-mediated pathogen recognition. The impact of both the PC dose (10%, 25%) and ex vivo storage period was investigated [day 2 (D2), day 5 (D5), day 7 (D7)]. PC-SNs alone had minimal impact on DC-specific inflammatory responses and the overall inflammatory response. However, in the presence of LPS, exposure to PC-SNs resulted in a significant dose associated suppression of the production of DC IL-12, IL-6, IL-1a, tumor necrosis factor-a (TNF-a), and macrophage inflammatory protein (MIP)-1b and storage-associated suppression of the production of DC IL-10, TNF-a, and IL-8. For the overall inflammatory response, IL-6, TNF-a, MIP-1a, MIP-1b, and inflammatory protein (IP)-10 were significantly suppressed and IL-8, IL-10, and IL-1b significantly increased following exposure to PC-SNs in the presence of LPS. These data suggest that soluble mediators present in PCs significantly suppress DC function and modulate the overall inflammatory response, particularly in the presence of an infectious stimulus. Given the central role of DCs in the initiation and regulation of the immune response, these results suggest that modulation of the DC inflammatory profile is a probable mechanism contributing to transfusion-related complications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The sheep (Ovis aries) is favored by many musculoskeletal tissue engineering groups as a large animal model because of its docile temperament and ease of husbandry. The size and weight of sheep are comparable to humans, which allows for the use of implants and fixation devices used in human clinical practice. The construction of a complimentary DNA (cDNA) library can capture the expression of genes in both a tissue- and time-specific manner. cDNA libraries have been a consistent source of gene discovery ever since the technology became commonplace more than three decades ago. Here, we describe the construction of a cDNA library using cells derived from sheep bones based on the pBluescript cDNA kit. Thirty clones were picked at random and sequenced. This led to the identification of a novel gene, C12orf29, which our initial experiments indicate is involved in skeletal biology. We also describe a polymerase chain reaction-based cDNA clone isolation method that allows the isolation of genes of interest from a cDNA library pool. The techniques outlined here can be applied in-house by smaller tissue engineering groups to generate tools for biomolecular research for large preclinical animal studies and highlights the power of standard cDNA library protocols to uncover novel genes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective To test the hypothesis that the age at onset of bipolar disorder would identify a developmental subtype of bipolar disorder in adults characterized by increased levels of irritability, chronic course, rapid cycling, and comorbidity with attention deficit hyperactivity disorder. Methods Forty-four adult subjects diagnosed with bipolar disorder were selected from large family studies of youth with and without attention deficit hyperactivity disorder. These subjects were stratified by the age at onset in childhood (younger than 13 years; n = 8, 18%), adolescence (13–18 years; n = 12, 27%, or adulthood (older than 19 years; n = 24, 55%). All subjects were administered structure diagnostic interviews and a brief cognitive battery. Results In contrast with adult-onset bipolar disorder, child-onset bipolar disorder was associated with a longer duration of illness, more irritability than euphoria, a mixed presentation, a more chronic or rapid-cycling course, and increased comorbidity with childhood disruptive behavior disorders and anxiety disorders. Conclusion Stratification by age at onset of bipolar disorder identified subgroups of adult subjects with differing clinical correlates. This pattern of correlates is consistent with findings documented in children with pediatric bipolar disorder and supports the hypothesis that child-onset bipolar disorder may represent a developmental subtype of the disorder.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This review is focused on the impact of chemometrics for resolving data sets collected from investigations of the interactions of small molecules with biopolymers. These samples have been analyzed with various instrumental techniques, such as fluorescence, ultraviolet–visible spectroscopy, and voltammetry. The impact of two powerful and demonstrably useful multivariate methods for resolution of complex data—multivariate curve resolution–alternating least squares (MCR–ALS) and parallel factor analysis (PARAFAC)—is highlighted through analysis of applications involving the interactions of small molecules with the biopolymers, serum albumin, and deoxyribonucleic acid. The outcomes illustrated that significant information extracted by the chemometric methods was unattainable by simple, univariate data analysis. In addition, although the techniques used to collect data were confined to ultraviolet–visible spectroscopy, fluorescence spectroscopy, circular dichroism, and voltammetry, data profiles produced by other techniques may also be processed. Topics considered including binding sites and modes, cooperative and competitive small molecule binding, kinetics, and thermodynamics of ligand binding, and the folding and unfolding of biopolymers. Applications of the MCR–ALS and PARAFAC methods reviewed were primarily published between 2008 and 2013.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrospun nanofiber meshes have emerged as a new generation of scaffold membranes possessing a number of features suitable for tissue regeneration. One of these features is the flexibility to modify their structure and composition to orchestrate specific cellular responses. In this study, we investigated the effects of nanofiber orientation and surface functionalization on human mesenchymal stem cell (hMSC) migration and osteogenic differentiation. We used an in vitro model to examine hMSC migration into a cell-free zone on nanofiber meshes and mitomycin C treatment to assess the contribution of proliferation to the observed migration. Poly (ɛ-caprolactone) meshes with oriented topography were created by electrospinning aligned nanofibers on a rotating mandrel, while randomly oriented controls were collected on a stationary collector. Both aligned and random meshes were coated with a triple-helical, type I collagen-mimetic peptide, containing the glycine-phenylalanine-hydroxyproline-glycine-glutamate-arginine (GFOGER) motif. Our results indicate that nanofiber GFOGER peptide functionalization and orientation modulate cellular behavior, individually, and in combination. GFOGER significantly enhanced the migration, proliferation, and osteogenic differentiation of hMSCs on nanofiber meshes. Aligned nanofiber meshes displayed increased cell migration along the direction of fiber orientation compared to random meshes; however, fiber alignment did not influence osteogenic differentiation. Compared to each other, GFOGER coating resulted in a higher proliferation-driven cell migration, whereas fiber orientation appeared to generate a larger direct migratory effect. This study demonstrates that peptide surface modification and topographical cues associated with fiber alignment can be used to direct cellular behavior on nanofiber mesh scaffolds, which may be exploited for tissue regeneration.