940 resultados para 1042
Resumo:
In this paper, we present some early work concerned with the development of a simple solid fuel combustion model incorporated within a Computational Fluid Dynamics (CFD) framework. The model is intended for use in engineering applications of fire field modeling and represents an extension of this technique to situations involving the combustion of solid cellulosic fuels. A simple solid fuel combustion model consisting of a thermal pyrolysis model, a six flux radiation model and an eddy-dissipation model for gaseous combustion have been developed and implemented within the CFD code CFDS-FLOW3D. The model is briefly described and demonstrated through two applications involving fire spread in a compartment with a plywood lined ceiling. The two scenarios considered involve a fire in an open and closed compartment. The model is shown to be able to qualitatively predict behaviors similar to "flashover"—in the case of the open room—and "backdraft"— in the case of the initially closed room.
Resumo:
This paper describes a project aimed at making Computational Fluid Dynamics (CFD)- based fire simulation accessible to members of the fire safety engineering community. Over the past few years, the practice of CFD-based fire simulation has begun the transition from the confines of the research laboratory to the desk of the fire safety engineer. To a certain extent, this move has been driven by the demands of performance based building codes. However, while CFD modeling has many benefits over other forms of fire simulation, it requires a great deal of expertise on the user’s part to obtain reasonable simulation results. The project described in this paper, SMARTFIRE, aims to relieve some of this dependence on expertise so that users are less concerned with the details of CFD analysis and can concentrate on results. This aim is achieved by the use of an expert system component as part of the software suite which takes some of the expertise burden away from the user. SMARTFIRE also makes use of the latest developments in CFD technology in order to make the CFD analysis more efficient. This paper describes design considerations of the SMARTFIRE software, emphasizing its open architecture, CFD engine and knowledge-based systems.
Resumo:
In recent years, evacuation models have been increasingly applied in an attempt to understand the outcome of emergency egress scenarios.
Resumo:
Occupant interaction with signage systems is being introduced into evacuation simulations through the newly developed concept of the Visibility Catchment Area or VCA. In this article, we describe the concept of VCA and how it has been extended to incorporate the presence of physical obstructions and termination distance. The VCA concept is then linked to a prototype behavior model intended to represent the occupant's interaction with the signage system. The functionality and performance of the newly developed model is then demonstrated through the simulation of various evacuation scenarios within a hypothetical supermarket layout
Resumo:
Flexible Circuit Boards (FPCs) are now being widely used in the electronic industries especially in the areas of electronic packages. Due to European lead-free legislation which has been implemented since July 2006, electronic packaging industries have to switch to use in the lead-free soldering technology. This change has posed a number of challenges in terms of development of lead-free solders and compatible substrates. An increase of at least 20-50 degrees in the reflow temperature is a concern and substantial research is required to investigate a sustainable design of flexible circuit boards as carrier substrates. This paper investigates a number of design variables such as copper conductor width, type of substrate materials, effect of insulating materials, etc. Computer modeling has been used to investigate thermo-mechanical behavior, and reliability, of flexible substrates after they have been subjected to a lead- free solder processing. Results will show particular designs that behave better for a particular rise in peak reflow temperature. Also presented will be the types of failures that can occur in these substrates and what particular materials are more reliable.
Resumo:
Signage systems are widely used in buildings to provide information for wayfinding, thereby assisting in navigation during normal circulation of pedestrians and, more importantly, exiting information during emergencies. An important consideration in determining the effectiveness of signs is establishing the region from which the sign is visible to occupants, the so-called visibility catchment area (VCA). This study attempts to factor into the determination of the VCA of signs, the observation angle of the observer. In building regulations, it is implicitly assumed that the VCA is independent of the observation angle. A theoretical model is developed to explain the relationship between the VCA and observation angle and experimental trials are performed in order to assess the validity of this model. The experimental findings demonstrate a consistency with the theoretical model. Given this result, the functionality of a comprehensive evacuation model is extended in accordance with the assumptions on which the theoretical model is based and is then demonstrated using several examples
Resumo:
In this article, the representation of the merging process at the floor— stair interface is examined within a comprehensive evacuation model and trends found in experimental data are compared with model predictions. The analysis suggests that the representation of floor—stair merging within the comprehensive model appears to be consistent with trends observed within several published experiments of the merging process. In particular: (a) The floor flow rate onto the stairs decreases as the stair population density increases. (b) For a given stair population density, the floor population's flow rate onto the stairs can be maximized by connecting the floor to the landing adjacent to the incoming stair. (c) In situations where the floor is connected adjacent to the incoming stair, the merging process appears to be biased in favor of the floor population. It is further conjectured that when the floor is connected opposite the incoming stair, the merging process between the stair and floor streams is almost in balance for high stair population densities, with a slight bias in favor of the floor stream at low population densities. A key practical finding of this analysis is that the speed at which a floor can be emptied onto a stair can be enhanced simply by connecting the floor to the landing at a location adjacent to the incoming stair rather than opposite the stair. Configuring the stair in this way, while reducing the floor emptying time, results in a corresponding decrease in the descent flow rate of those already on the stairs. While this is expected to have a negligible impact on the overall time to evacuate the building, the evacuation time for those higher up in the building is extended while those on the lower flows is reduced. It is thus suggested that in high-rise buildings, floors should be connected to the landing on the opposite side to the incoming stair. Information of this type will allow engineers to better design stair—floor interfaces to meet specific design objectives.
Resumo:
This article concerns an investigation of the full scale evacuation of a building with a configuration similar to that of the World Trade Center (WTC) North Tower using computer simulation. A range of evacuation scenarios is explored in order to better understand the evacuation of the WTC on 11 September 2001. The analysis makes use of response time data derived from a study of published WTC survivor accounts. Geometric details of the building are obtained from architects' plans while the total building population used in the scenarios is based on estimates produced by the National Institute of Standards and Technology formal investigation into the evacuation. This paper attempts to approximate the events of 11 September 2001 and pursue several `what if' questions concerning the evacuation. In particular, the study explores the likely outcome had a single staircase survived intact from top to bottom. More generally, this paper explores issues associated with the practical limits of building size that can be expected to be efficiently evacuated using stairs alone.
Resumo:
Knipholone (KP) and knipholone anthrone (KA) are natural 4-phenylanthraquinone structural analogues with established differential biological activities including in vitro antioxidant and cytotoxic properties. By using DNA damage as an experimental model, the comparative Cu(II)-dependent prooxidant action of these two compounds were studied. In the presence of Cu(II) ions, the antioxidant KA (3.1-200 microM) but not KP (6-384 microM) caused a concentration-dependent pBR322 plasmid DNA strand scission. The DNA damage induced by KA could be abolished by reactive oxygen species scavengers, glutathione and catalase as well as EDTA and a specific Cu(I) chelator bathocuproine disulfonic acid. In addition to Cu(II) chelating activity, KA readily reduces Cu(II) to Cu(I). Copper-dependent generation of reactive oxygen species and the subsequent macromolecular damage may be involved in the antimicrobial and cytotoxic activity of KA.
Resumo:
Objteivo: Valorar si existe relación entre el aumento de temperatura en el pie y la neuropatía diabética periférica. Métodos: La muestra fueron 27 pacientes diabéticos a que se le realizó una exploración neurológica y vascular, además, haciendo uso de un termómetro infrarrojo medimos la temperatura en distintos puntos anatómicos de la planta del pie. Resultados: La temperatura es mayor los pacientes con neuropatía con una diferencia de 2,24ºC (p=0,454) en el pie derecho y 0,86ºC (p=0,589) en el pie izquierdo. Conclusión: Los resultados sugieren que la automonitorización de la temperatura del pie por parte del paciente diabético podría ayudar a reducir la alta incidencia de complicaciones en el pie diabético.
Resumo:
Amphibian defensive skin secretions are complex, species-specific cocktails of biologically active molecules, including many uncharacterized peptides. The study of such secretions for novel peptide discovery is time-limited, as amphibians are in rapid global decline. While secretion proteome analysis is non-lethal, transcriptome analysis has until now required killing of specimens prior to skin dissection for cDNA library construction. Here we present the discovery that polyadenylated mRNAs encoding dermal granular gland peptides are present in defensive skin secretions, stabilized by endogenous nucleic acid-binding amphipathic peptides. Thus parallel secretory proteome and transcriptome analyses can be performed without killing the specimen in this model amphibian system--a finding that has important implications in conservation of biodiversity within this threatened vertebrate taxon and whose mechanistics may have broader implications in biomolecular science.