964 resultados para 1,3,5-Triazine
Resumo:
Electrochemical polymerized polyaniline(PAn) film electrode was used to investigate the electrocatalytic effect of PAn on the electrochemical redox reaction of 2,5-dimercapto-1,3,4-thiadiazole (DMcT), PAn film electrode was electrochemically treated or immersed in DMcT solution before it was scanned in 1.0 mol/L HCl electrolyte. The cyclic voltammograms of PAn film electrode in 1.0 mol/L HCl solution changed with the above treatment, implying the electrocatalytic effect of PAn on the redox reaction of DMcT, The formation of electron-donor-acceptor adducts through the interaction between thiol or disulfide groups of DMcT and amine or imine groups of PAn during the treatment was probably the reason of the catalysis, The electrochemical properties of the adduct were different from those of PAn and DMcT, The adduct possessed a higher electrochemical activity and a better electrochemical reversibility than DMcT or PAn used alone.
Resumo:
研究了聚苯胺 ( PAn)膜电极在 2 ,5-二巯基 -1 ,3 ,4 -噻二唑 ( DMc T)溶液中电化学处理或浸泡后的循环伏安 ( CV)曲线的变化规律 .实验结果表明 ,PAn膜电极在 DMc T溶液中进行电化学处理或浸泡过程可使DMc T进入 PAn膜内部与 PAn形成复合物 .PAn对 DMc T的电化学催化作用可能和二者之间形成的电子给体 -受体复合物有关 .该复合物的电化学氧化还原特性不同于 PAn和 DMc T,其氧化还原反应速率和可逆性均优于 DMc T
Resumo:
由2-(1,2-亚乙二硫)亚甲基-3-羰基-5-芳基-4-戊烯酸与三苯基氢氧化锡反应,合成了九个标题化合物3.用X射线衍射法测定了3b的晶体结构.该晶体属三斜晶系,空间群Pl,α=0.9074(2)nm,b=1.6809(3)nm,c=2.1834(4)nm,α=77.57(3)°,β=88.04(3)°,γ=89.47(3)°,V=3.2503nm~3,Z=2;R=0.0592.由锡氧原子间距离可推测,该晶体中羧酸根作为双齿配体与锡原子形成了分子内五配位结构.
Resumo:
The target compound BCH-189 was synthesized with high yield via four steps from benzoyloxy acetylaldehyde and p-dithiane-2,5-diol as starting materials. The synthetic route is preferable to what literature reported.
Resumo:
合成了 3个三环己基锡 -2 -( 1 ,2 -亚乙二硫 )亚甲基 -3-羰基 -5 -芳基 -4 -戊烯酸酯化合物 .用 IR,1 H NMR,1 3 C NMR和 1 1 9Sn NMR光谱及 X射线衍射对所合成的化合物进行了表征 .结果表明标题化合物为四配位、具有畸变四面体结构的锡酯类化合物
Resumo:
A poly(o-toluidine) (POT)/2,5-dimercapto-1,3,4-thiadiazole (DMcT) composite was prepared. When POT and DMcT are mixed in a proper solvent, POT in a medium-oxidation state is reduced, and DMcT in turn is oxidized to its soluble dimer when the molar ratio of DMcT to POT is higher than 0.5. Therefore, the composite was soluble in organic solvents such as tetrahydrofuran (THF), dimethylformamide (DMF), and N-methyl-2-pyrrolidone (NMP) and exhibited very high electroactivity, two orders of magnitude higher than that of pure POT and three orders of magnitude higher than that of pure DMcT. Molecular-level contact between POT and DMcT is the reason for the improved catalytic effect of POT on DMcT, compared to that of polyaniline on DMcT. (C) 1999 The Electrochemical Society. S0013-4651(98)08-059-8. All rights reserved.
Resumo:
A novel dianhydride, 3,3'-dioxo-[1,1']-spirodiphthalan-5,5',6,6'-tetracarboxlic dianhydride, was synthesized and used as a monomer to prepare polyimides with several diamines via a conventional two-stage procedure. The intermediate poly(amic-acid)s had inherent viscosities of 0.84-1.71 dL/g and could be thermally converted into lightly yellow, transparent, flexible and tough films. Films cast from chemically imidized polyimides were transparent and colorless. The glass transition temperatures (Tg) were > 400 degrees C, and the 5% weight-loss temperatures were > 420 degrees C in N-2 and in air. The solubilities of these polyimides in various solvents were evaluated. The mechanical properties of some polyimides were also tested. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
The gas transport properties of a series polyetherimides, which were prepared from 1,4-bis(3,4-dicarboxyphenoxy)benzene dianhydride (HQDPA) with 1,3-phenylenediamine or 3,5-diaminobenzic acid (DBA) or its esters are reported. The effects of carboxylic group (-COOH) and carboxylic ether groups (-COOR), at five positions of 1,3-phenylenediamine moiety, on H-2, CO2, O-2, and N-2 permeability, diffusivity, and solubility of the polyetherimides were investigated. The gas permeability, diffusion, and solubility coefficients of the polyetherimides containing COOR are bigger than those of HQDPA-PDA, but the ideal separation factors and ideal diffusivity selectivity factors are much smaller than that of HQDPA-PDA because COOR decreases chain segmental packing efficiency and increases chain segmental mobility. The permeability coefficients of HQDPA-DBA to H-2, CO2, and O-2 are bigger than those of HQDPA-PDA; the ideal separation factors for gas pairs H-2/N-2, CO2/N-2, and O-2/N-2 are also much bigger than those of HQDPA-PDA. Both the diffusion coefficients of CO2 and O-2 and the ideal diffusivity selectivity factors for CO2/N-2 and O-2/N-2 are bigger than those of HQDPA-PDA because COOH decreases both chain segmental packing efficiency and chain segmental mobility. The copolyimides, which were prepared from 3,5-diaminobenzic acid and 3,5-diaminobenzic esters, have both high permeability and high permselectivity. (C) 1997 John Wiley & Sons, Inc.
Resumo:
The mass spectral behaviour of 15 new type of organic phosphorus compounds with a considerable insecticidal activity, 1, 3,2-oxazaphospholidine 2-sulfides derivatives, under 70 eV electron impact has been studied by means of high and low resolution mass spectrometry as well as by B/E linked scan and MIKES/CID analysis. Discussion is focused into the isomerization between oxygen and sulphur in molecules and some rearrangement reactions.
Resumo:
Chitosan (CS) with two different molecular weights was modified by reacting with 4-hydroxyl-5-chloride-1,3-benzene-disulfo-chloride or 2-hydroxyl-5-chloride-1,3-benzene-disulfo-chloride to give new 2-(4(or 2)-hydroxyl-5-chloride-1,3-benzene-di-sulfanimide)-chitosan (2-HCBSAHCS, 2-HCBSALCS, 4-HCBSAHCS, 4-HCBSALCS). The structure of the derivatives was characterized by FT-IR and C-13 NMR spectroscopy. The antioxidant activities of the derivatives were investigated employing various established systems, such as hydroxyl radical ((OH)-O-center dot)/superoxide anion (O-2(radical anion)) scavenging/reducing power and chelating activity. All the derivatives showed stronger scavenging activity on hydroxyl radical than chitosan and ascorbic acid (Vc), and IC50 of 4-HCBSAHCS, 4-HCBSALCS, 2-HCBSAHCS and 2-HCBSALCS was 0.334, 0.302, 0.442, 0.346 mg/mL, respectively. The inhibitory activities of the derivatives toward superoxide radical by the PMS-NADH system were strong. The results showed that the superoxide radical scavenging effect of 2-(4(or 2)-hydroxyl-5-chloride-1,3-benzene-disulfanimide)-chitosan was higher than chitosan. The derivatives had obviously reducing power and slight chelating activity. The data obtained in in vitro models clearly establish the antioxidant potency of 2-(4(or 2)-hydroxyl-5-chloride-1,3-benzene-disulfanimide)-chitosan. (C) 2007 Elsevier Masson SAS. All rights reserved.
Resumo:
To understand how a signaling molecule's activities are regulated, we need insight into the processes controlling the dynamic balance between its synthesis and degradation. For the Ins(1,3,4,5,6)P5 signal, this information is woefully inadequate. For example, the only known cytosolic enzyme with the capacity to degrade Ins(1,3,4,5,6)P5 is the tumour-suppressor PTEN [J.J. Caffrey, T. Darden, M.R. Wenk, S.B. Shears, FEBS Lett. 499 (2001) 6 ], but the biological relevance has been questioned by others [E.A. Orchiston, D. Bennett, N.R. Leslie, R.G. Clarke, L. Winward, C.P. Downes, S.T. Safrany, J. Biol. Chem. 279 (2004) 1116 ]. The current study emphasizes the role of physiological levels of PTEN in Ins(1,3,4,5,6)P5 homeostasis. We employed two cell models. First, we used a human U87MG glioblastoma PTEN-null cell line that hosts an ecdysone-inducible PTEN expression system. Second, the human H1299 bronchial cell line, in which PTEN is hypomorphic due to promoter methylation, has been stably transfected with physiologically relevant levels of PTEN. In both models, a novel consequence of PTEN expression was to increase Ins(1,3,4,5,6)P5 pool size by 30-40% (p<0.01); this response was wortmannin-insensitive and, therefore, independent of the PtdIns 3-kinase pathway. In U87MG cells, induction of the G129R catalytically inactive PTEN mutant did not affect Ins(1,3,4,5,6)P(5) levels. PTEN induction did not alter the expression of enzymes participating in Ins(1,3,4,5,6)P5 synthesis. Another effect of PTEN expression in U87MG cells was to decrease InsP6 levels by 13% (p<0.02). The InsP6-phosphatase, MIPP, may be responsible for the latter effect; we show that recombinant human MIPP dephosphorylates InsP6 to D/L-Ins(1,2,4,5,6)P5, levels of which increased 60% (p<0.05) following PTEN expression in U87MG cells. Overall, our data add higher inositol phosphates to the list of important cellular regulators [Y. Huang, R.P. Wernyj, D.D. Norton, P. Precht, M.C. Seminario, R.L. Wange, Oncogene, 24 (2005) 3819 ] the levels of which are modulated by expression of the highly pleiotropic PTEN protein.
Resumo:
The X-ray crystal structures of two crystalline forms of 5-(2,3,5-trichlorophenyl)-2,4-diaminopyrimidine, C10H7Cl3N4 (code name BW1003C87) (I) and (II), have been carried out at liquid nitrogen temperature. A detailed comparison of the two structures is given. Both are centrosymmetric, with structure (I) in the triclinic space group P (1) over bar unit cell a = 6.4870(10), b = 9.216(2), c = 12.016(2) angstrom, alpha = 75.78(3)degrees, beta = 89.95(3)degrees, gamma = 83.45(3)degrees, V = 691.5(2) angstrom(3), Z = 2 and density (calculated) = 1.544 Mg/m(3); and (II) in the monoclinic space group P2(1)/c, unit cell a = 12.000(2), b = 7.518(2), c = 13.450(3) angstrom, beta = 97.87(3)degrees, V = 1202.0(5) angstrom(3), Z = 4, Density (calculated) = 1.600 Mg/m(3). Structure (I) includes a solvated CH3OH in the lattice. Final R indices [I > 2sigma(I)] are R1 = 0.0427, wR2 = 0.1075 for (I) and R1 = 0.0487, wR2 = 0.1222 for (II). R indices (all data) are R1 = 0.0470, wR2 = 0.1118 for (I) and R1 = 0.0623, wR2 = 0.1299 for (II). 5-Phenyl-2,4 diaminopyrimidine and 6-phenyl-1,2,4 triazine derivatives, which include lamotrigine (3,5-diamino-6-(2,3-dichlorophenyl)-1,2,4-triazine), have been investigated for some time for their effects on the central nervous system. Both lamotrigine and 5-(2,3,5-trichlorophenyl)-2,4-diaminopyrimidine (code name BW1003C87), the subject of the present study, are anticonvulsant as well as neuroprotective in models of brain ischaemia and in a model of white matter ischaemia. BW1003C87 is a sodium channel blocker which also reduces the release of the neurotransmitter glutamate. The three dimensional structures reported here form part of a newly developed data base for the detailed investigation of members of this drug family and their biological activities.