877 resultados para 080108 Neural Evolutionary and Fuzzy Computation
Resumo:
Uncertainty quantification (UQ) is both an old and new concept. The current novelty lies in the interactions and synthesis of mathematical models, computer experiments, statistics, field/real experiments, and probability theory, with a particular emphasize on the large-scale simulations by computer models. The challenges not only come from the complication of scientific questions, but also from the size of the information. It is the focus in this thesis to provide statistical models that are scalable to massive data produced in computer experiments and real experiments, through fast and robust statistical inference.
Chapter 2 provides a practical approach for simultaneously emulating/approximating massive number of functions, with the application on hazard quantification of Soufri\`{e}re Hills volcano in Montserrate island. Chapter 3 discusses another problem with massive data, in which the number of observations of a function is large. An exact algorithm that is linear in time is developed for the problem of interpolation of Methylation levels. Chapter 4 and Chapter 5 are both about the robust inference of the models. Chapter 4 provides a new criteria robustness parameter estimation criteria and several ways of inference have been shown to satisfy such criteria. Chapter 5 develops a new prior that satisfies some more criteria and is thus proposed to use in practice.
Resumo:
The main goal of this thesis is to discuss the determination of homological invariants of polynomial ideals. Thereby we consider different coordinate systems and analyze their meaning for the computation of certain invariants. In particular, we provide an algorithm that transforms any ideal into strongly stable position if char k = 0. With a slight modification, this algorithm can also be used to achieve a stable or quasi-stable position. If our field has positive characteristic, the Borel-fixed position is the maximum we can obtain with our method. Further, we present some applications of Pommaret bases, where we focus on how to directly read off invariants from this basis. In the second half of this dissertation we take a closer look at another homological invariant, namely the (absolute) reduction number. It is a known fact that one immediately receives the reduction number from the basis of the generic initial ideal. However, we show that it is not possible to formulate an algorithm – based on analyzing only the leading ideal – that transforms an ideal into a position, which allows us to directly receive this invariant from the leading ideal. So in general we can not read off the reduction number of a Pommaret basis. This result motivates a deeper investigation of which properties a coordinate system must possess so that we can determine the reduction number easily, i.e. by analyzing the leading ideal. This approach leads to the introduction of some generalized versions of the mentioned stable positions, such as the weakly D-stable or weakly D-minimal stable position. The latter represents a coordinate system that allows to determine the reduction number without any further computations. Finally, we introduce the notion of β-maximal position, which provides lots of interesting algebraic properties. In particular, this position is in combination with weakly D-stable sufficient for the weakly D-minimal stable position and so possesses a connection to the reduction number.
Resumo:
Multiphase flows, type oil–water-gas are very common among different industrial activities, such as chemical industries and petroleum extraction, and its measurements show some difficulties to be taken. Precisely determining the volume fraction of each one of the elements that composes a multiphase flow is very important in chemical plants and petroleum industries. This work presents a methodology able to determine volume fraction on Annular and Stratified multiphase flow system with the use of neutrons and artificial intelligence, using the principles of transmission/scattering of fast neutrons from a 241Am-Be source and measurements of point flow that are influenced by variations of volume fractions. The proposed geometries used on the mathematical model was used to obtain a data set where the thicknesses referred of each material had been changed in order to obtain volume fraction of each phase providing 119 compositions that were used in the simulation with MCNP-X –computer code based on Monte Carlo Method that simulates the radiation transport. An artificial neural network (ANN) was trained with data obtained using the MCNP-X, and used to correlate such measurements with the respective real fractions. The ANN was able to correlate the data obtained on the simulation with MCNP-X with the volume fractions of the multiphase flows (oil-water-gas), both in the pattern of annular flow as stratified, resulting in a average relative error (%) for each production set of: annular (air= 3.85; water = 4.31; oil=1.08); stratified (air=3.10, water 2.01, oil = 1.45). The method demonstrated good efficiency in the determination of each material that composes the phases, thus demonstrating the feasibility of the technique.
Resumo:
International audience
Resumo:
In this work, we develop a randomized bounded arithmetic for probabilistic computation, following the approach adopted by Buss for non-randomized computation. This work relies on a notion of representability inspired by of Buss' one, but depending on a non-standard quantitative and measurable semantic. Then, we establish that the representable functions are exactly the ones in PPT. Finally, we extend the language of our arithmetic with a measure quantifier, which is true if and only if the quantified formula's semantic has measure greater than a given threshold. This allows us to define purely logical characterizations of standard probabilistic complexity classes such as BPP, RP, co-RP and ZPP.
Resumo:
Os sistemas biológicos são surpreendentemente flexíveis pra processar informação proveniente do mundo real. Alguns organismos biológicos possuem uma unidade central de processamento denominada de cérebro. O cérebro humano consiste de 10(11) neurônios e realiza processamento inteligente de forma exata e subjetiva. A Inteligência Artificial (IA) tenta trazer para o mundo da computação digital a heurística dos sistemas biológicos de várias maneiras, mas, ainda resta muito para que isso seja concretizado. No entanto, algumas técnicas como Redes neurais artificiais e lógica fuzzy tem mostrado efetivas para resolver problemas complexos usando a heurística dos sistemas biológicos. Recentemente o numero de aplicação dos métodos da IA em sistemas zootécnicos tem aumentado significativamente. O objetivo deste artigo é explicar os princípios básicos da resolução de problemas usando heurística e demonstrar como a IA pode ser aplicada para construir um sistema especialista para resolver problemas na área de zootecnia.
Resumo:
This paper aims to formulate and investigate the application of various nonlinear H(infinity) control methods to a fiee-floating space manipulator subject to parametric uncertainties and external disturbances. From a tutorial perspective, a model-based approach and adaptive procedures based on linear parametrization, neural networks and fuzzy systems are covered by this work. A comparative study is conducted based on experimental implementations performed with an actual underactuated fixed-base planar manipulator which is, following the DEM concept, dynamically equivalent to a free-floating space manipulator. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Työn tavoitteena oli tutkia älykkäiden ohjausjärjestelmien käyttöä mekatronisen koneen väsymiskeston parantamisessa. Älykkäiden järjestelmien osalta työssä keskityttiin lähinnä neuroverkkojen ja sumean logiikan mahdollisuuksien tutkimiseen. Tämän lisäksi työssä kehitettiin väsymiskestoikää lisäävä älykkäisiin järjestelmiin perustuva ohjausalgoritmi. Ohjausalgoritmi liitettiin osaksi puutavarakuormaimen ohjausta. Ohjaimen kehittely suoritettiin aluksi simulointimallien avulla. Laajemmat ohjaimen testaukset suoritettiin laboratoriossa fyysisen prototyypin avulla. Tuloksena puutavarakuormaimen puomin väsymiskestoikäennuste saatiin moninkertaistettua. Väsymiskestoiän parantumisen lisäksi ohjainalgoritmi myös vaimentaa kuormaimen värähtelyä.
Resumo:
One of the essential needs to implement a successful e-Government web application is security. Web application firewalls (WAF) are the most important tool to secure web applications against the increasing number of web application attacks nowadays. WAFs work in different modes depending on the web traffic filtering approach used, such as positive security mode, negative security mode, session-based mode, or mixed modes. The proposed WAF, which is called (HiWAF), is a web application firewall that works in three modes: positive, negative and session based security modes. The new approach that distinguishes this WAF among other WAFs is that it utilizes the concepts of Artificial Intelligence (AI) instead of regular expressions or other traditional pattern matching techniques as its filtering engine. Both artificial neural networks and fuzzy logic concepts will be used to implement a hybrid intelligent web application firewall that works in three security modes.
Resumo:
In this chapter we described how the inclusion of a model of a human arm, combined with the measurement of its neural input and a predictor, can provide to a previously proposed teleoperator design robustness under time delay. Our trials gave clear indications of the superiority of the NPT scheme over traditional as well as the modified Yokokohji and Yoshikawa architectures. Its fundamental advantages are: the time-lead of the slave, the more efficient, and providing a more natural feeling manipulation, and the fact that incorporating an operator arm model leads to more credible stability results. Finally, its simplicity allows less likely to fail local control techniques to be employed. However, a significant advantage for the enhanced Yokokohji and Yoshikawa architecture results from the very fact that it’s a conservative modification of current designs. Under large prediction errors, it can provide robustness through directing the master and slave states to their means and, since it relies on the passivity of the mechanical part of the system, it would not confuse the operator. An experimental implementation of the techniques will provide further evidence for the performance of the proposed architectures. The employment of neural networks and fuzzy logic, which will provide an adaptive model of the human arm and robustifying control terms, is scheduled for the near future.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this paper, we address some issue related to evaluating and testing evolutionary algorithms. A landscape generator based on Gaussian functions is proposed for generating a variety of continuous landscapes as fitness functions. Through some initial experiments, we illustrate the usefulness of this landscape generator in testing evolutionary algorithms.
Resumo:
Pac-Man is a well-known, real-time computer game that provides an interesting platform for research. We describe an initial approach to developing an artificial agent that replaces the human to play a simplified version of Pac-Man. The agent is specified as a simple finite state machine and ruleset. with parameters that control the probability of movement by the agent given the constraints of the maze at some instant of time. In contrast to previous approaches, the agent represents a dynamic strategy for playing Pac-Man, rather than a pre-programmed maze-solving method. The agent adaptively "learns" through the application of population-based incremental learning (PBIL) to adjust the agents' parameters. Experimental results are presented that give insight into some of the complexities of the game, as well as highlighting the limitations and difficulties of the representation of the agent.