892 resultados para zinc gallate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we describe the synthesis of an ion imprinted polymer (IIP) by homogeneous polymerization and its use in solid-phase to extract and preconcentrate zinc ions. Under optimal conditions (pH 5.0, preconcentration flow rate of 12.0 mL min-1, and eluted with 1.0 mol L-1 HNO3) this procedure allows the determination of zinc with an enrichment factor of 10.2, and with limits of detection and quantification of 1.5 and 5.0 µg L-1, respectively. The accuracy of our results was confirmed by analysis of tap water and certified reference materials: NIST 1570a (Spinach leaves) and NIST 1515 (Apple leaves).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compounds of cinnamic acid with manganese, zinc and lead have been prepared in aqueous solution. Thermogravimetry, derivative thermogravimetry (TG, DTG), differential scanning calorimetry (DSC), X-ray diffraction and complexometry have been used in the characterization as well as in the study of the thermal stability and interpretation concerning the thermal decomposition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solid state compounds M-4-DMCP, where 4-DMCP is 4-dimethylaminocinnamylidenepyruvate and M represents Mn (II), Co (II), Ni (II), Cu (II), Zn (II) and Pb (II) were prepared. These compounds were studied by thermoanalitycal techniques: thermogravimetry (TG), derivative thermogravimetry (DTG), differential scanning calorimetry (DSC), X-ray diffraction powder patterns and complexometric titration with EDTA. From the results obtained by the complexometric titration with EDTA, TG, DTG and DSC curves, was possible to establish the hydration degree, stoichiometry and thermal stability of the prepared compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silica gel chemically modified with 2-Aminotiazole groups, abbreviated as SiAT, was used for preconcentration of copper, zinc, nickel and iron from kerosene, normally used as a engine fuel for airplanes. Surface characteristics and surface area of the silica gel were obtained before and after chemical modification using FT-IR, Kjeldhal and surface area analysis (B.E.T.). The retention and recovery of the analyte elements were studied by applying batch and column techniques. The experimental parameters, such as shaking time in batch technique, flow rate and concentration of the eluent (HCl- 0.25-2.00 mol L-1) and the amount of silica, on retention and elution, have been investigated. Detection limits of the method for copper, iron, nickel and zinc are 0.77, 2.92, 1.73 and 0.097 mg L-1, respectively. The sorption-desorption of the studied metal ions made possible the development of a preconcentration method for metal ions at trace level in kerosene using flame AAS for their quantification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Direct leaching is an alternative to conventional roast-leach-electrowin (RLE) zinc production method. The basic reaction of direct leach method is the oxidation of sphalerite concentrate in acidic liquid by ferric iron. The reaction mechanism and kinetics, mass transfer and current modifications of zinc concentrate direct leaching process are considered. Particular attention is paid to the oxidation-reduction cycle of iron and its role in direct leaching of zinc concentrate, since it can be one of the limiting factors of the leaching process under certain conditions. The oxidation-reduction cycle of iron was experimentally studied with goal of gaining new knowledge for developing the direct leaching of zinc concentrate. In order to obtain this aim, ferrous iron oxidation experiments were carried out. Affect of such parameters as temperature, pressure, sulfuric acid concentration, ferrous iron and copper concentrations was studied. Based on the experimental results, mathematical model of the ferrous iron oxidation rate was developed. According to results obtained during the study, the reaction rate orders for ferrous iron concentration, oxygen concentration and copper concentration are 0.777, 0.652 and 0.0951 respectively. Values predicted by model were in good concordance with the experimental results. The reliability of estimated parameters was evaluated by MCMC analysis which showed good parameters reliability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A procedure for separation and preconcentration of trace amounts of Zn(II) from aqueous media is proposed. The procedure is based on the adsorption of Zn2+ on octadecyl bonded silica membrane disk modified with N,N'-disalicylidene-1,2-phenylendiamine at pH 7. The retained zinc ions were then stripped from the disk with a minimal amount of 1.5 mol L-1 hydrochloric acid solution as eluent, and determined by flame atomic absorption spectrometry. Maximum capacity of the membrane disk modified with 5 mg of the ligand was found to be 226 µg Zn2+. The relative standard deviation of zinc for ten replicate extraction of 10 µg zinc from 1000 mL samples was 1.2%. The limit of detection of the proposed method was 14 ng of Zn2+ per 1000 mL. The method was successfully applied to the determination of zinc in natural water samples and accuracy was examined by recovery experiments and independent analysis by graphite furnace atomic absorption spectrometry (GFAAS).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work aimed to study the agronomic performance and capacity of nutrient removal by bermudagrass (Cynodon spp.) and cattail (Typha sp.) when grown in constructed wetlands systems (CWSs) of vertical and horizontal flow, respectively, used in the post-treatment of swine breeding wastewater (ARS). The average yield of dry matter (DM) of bermudagrass in sections of 60-day interval ranged from 14 to 43 t ha-1, while the cultivated cattail produced in a single cut after 200 days of cultivation between 45 and 67 t ha-1 of DM. Bermudagrass extracted up to 17.65 kg ha-1 d-1 of nitrogen, 1.76 kg ha-1 d-1 of phosphorus, 6.67 g ha-1 d-1 of copper and 54.75 g ha-1 d-1 of zinc. Cattail extracted up to 5.10 kg ha-1 d-1 of nitrogen, 1.07 kg ha-1 d-1 of phosphorus, 1.41 g ha-1 d-1 of copper and 16.04 g ha-1 d-1 of zinc. Cattail and bermudagrass were able to remove, respectively, 5.0 and 4.6% of the nitrogen and 11.2 and 5.4% of the phosphorus applied via ARS, being less efficient in extracting N and P when the initial intake of these nutrients is evaluated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence of microorganisms in dental structures with experimentally induced necrosis was evaluated. The materials were tested to evaluate their antimicrobial activity and tissue repair efficacy. Four dogs were used in this experiment, with a total of 64 roots of premolar teeth, divided into three groups. The root canals of Group I were filled with gutta-percha and zinc oxide/eugenol cement; Group II were filled with calcium hydroxide, and Group III were not filled. All animals were clinically and radiographically examined 15 days after surgery andthen again every subsequent 15 days until 120 days, when the teeth were extracted en bloc.Histopathological analysis showed inflammatory infiltration, cement and bone resorption andnecrotic tissue in the apical delta in different proportions. Histomicrobiological analysis showedthe presence of microorganisms inside the teeth structures, with different concentrationsaccording to the treatment used. There was statistical significance between the groups(p>0.05). Gutta-percha with zinc oxide/eugenol demonstrated good antimicrobial activity;calcium hydroxide was not efficient. The conclusion of this study is that gutta-percha withzinc oxide/eugenol is the better protocol for filling root canals in dogs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Waste combustion has gone from being a volume reducing discarding-method to an energy recovery process for unwanted material that cannot be reused or recycled. Different fractions of waste are used as fuel today, such as; municipal solid waste, refuse derived fuel, and solid recovered fuel. Furthermore, industrial waste, normally a mixture between commercial waste and building and demolition waste, is common, either as separate fuels or mixed with, for example, municipal solid waste. Compared to fossil or biomass fuels, waste mixtures are extremely heterogeneous, making it a complicated fuel. Differences in calorific values, ash content, moisture content, and changing levels of elements, such as Cl and alkali metals, are common in waste fuel. Moreover, waste contains much higher levels of troublesome trace elements, such as Zn, which is thought to accelerate a corrosion process. Varying fuel quality can be strenuous on the boiler system and may cause fouling and corrosion of heat exchanger surfaces. This thesis examines waste fuels and waste combustion from different angles, with the objective of giving a better understanding of waste as an important fuel in today’s fuel economy. Several chemical characterisation campaigns of waste fuels over longer time periods (10-12 months) was used to determine the fossil content of Swedish waste fuels, to investigate possible seasonal variations, and to study the presence of Zn in waste. Data from the characterisation campaigns were used for thermodynamic equilibrium calculations to follow trends and determine the effect of changing concentrations of various elements. The thesis also includes a study of the thermal behaviour of Zn and a full—scale study of how the bed temperature affects the volatilisation of alkali metals and Zn from the fuel. As mixed waste fuel contains considerable amounts of fresh biomass, such as wood, food waste, paper etc. it would be wrong to classify it as a fossil fuel. When Sweden introduced waste combustion as a part of the European Union emission trading system in the beginning of 2013 there was a need for combustion plants to find a usable and reliable method to determine the fossil content. Four different methods were studied in full-scale of seven combustion plants; 14Canalysis of solid waste, 14C-analysis of flue gas, sorting analysis followed by calculations, and a patented balance method that is using a software program to calculate the fossil content based on parameters from the plant. The study showed that approximately one third of the coal in Swedish waste mixtures has fossil origins and presented the plants with information about the four different methods and their advantages and disadvantages. Characterisation campaigns also showed that industrial waste contain higher levels of trace elements, such as Zn. The content of Zn in Swedish waste fuels was determined to be approximately 800 mg kg-1 on average, based on 42 samples of solid waste from seven different plants with varying mixtures between municipal solid waste and industrial waste. A review study of the occurrence of Zn in fuels confirmed that the highest amounts of Zn are present in waste fuels rather than in fossil or biomass fuels. In tires, Zn is used as a vulcanizing agent and can reach concentration values of 9600-16800 mg kg-1. Waste Electrical and Electronic Equipment is the second Zn-richest fuel and even though on average Zn content is around 4000 mg kg-1, the values of over 19000 mg kg-1 were also reported. The increased amounts of Zn, 3000-4000 mg kg-1, are also found in municipal solid waste, sludge with over 2000 mg kg-1 on average (some exceptions up to 49000 mg kg-1), and other waste derived fuels (over 1000 mg kg-1). Zn is also found in fossil fuels. In coal, the average level of Zn is 100 mg kg-1, the higher amount of Zn was only reported for oil shale with values between 20-2680 mg kg-1. The content of Zn in biomass is basically determined by its natural occurrence and it is typically 10-100 mg kg-1. The thermal behaviour of Zn is of importance to understand the possible reactions taking place in the boiler. By using thermal analysis three common Zn-compounds were studied (ZnCl2, ZnSO4, and ZnO) and compared to phase diagrams produced with thermodynamic equilibrium calculations. The results of the study suggest that ZnCl2(s/l) cannot exist readily in the boiler due to its volatility at high temperatures and its conversion to ZnO in oxidising conditions. Also, ZnSO4 decomposes around 680°C, while ZnO is relatively stable in the temperature range prevailing in the boiler. Furthermore, by exposing ZnO to HCl in a hot environment (240-330°C) it was shown that chlorination of ZnO with HCl gas is possible. Waste fuel containing high levels of elements known to be corrosive, for example, Na and K in combination with Cl, and also significant amounts of trace elements, such as Zn, are demanding on the whole boiler system. A full-scale study of how the volatilisation of Na, K, and Zn is affected by the bed temperature in a fluidised bed boiler was performed parallel with a lab-scale study with the same conditions. The study showed that the fouling rate on deposit probes were decreased by 20 % when the bed temperature was decreased from 870°C to below 720°C. In addition, the lab-scale experiments clearly indicated that the amount of alkali metals and Zn volatilised depends on the reactor temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This doctoral thesis describes the development work performed on the leachand purification sections in the electrolytic zinc plant in Kokkola to increase the efficiency in these two stages, and thus the competitiveness of the plant. Since metallic zinc is a typical bulk product, the improvement of the competitiveness of a plant was mostly an issue of decreasing unit costs. The problems in the leaching were low recovery of valuable metals from raw materials, and that the available technology offered complicated and expensive processes to overcome this problem. In the purification, the main problem was consumption of zinc powder - up to four to six times the stoichiometric demand. This reduced the capacity of the plant as this zinc is re-circulated through the electrolysis, which is the absolute bottleneck in a zinc plant. Low selectivity gave low-grade and low-value precipitates for further processing to metallic copper, cadmium, cobalt and nickel. Knowledge of the underlying chemistry was poor and process interruptions causing losses of zinc production were frequent. Studies on leaching comprised the kinetics of ferrite leaching and jarosite precipitation, as well as the stability of jarosite in acidic plant solutions. A breakthrough came with the finding that jarosite could precipitate under conditions where ferrite would leach satisfactorily. Based on this discovery, a one-step process for the treatment of ferrite was developed. In the plant, the new process almost doubled the recovery of zinc from ferrite in the same equipment as the two-step jarosite process was operated in at that time. In a later expansion of the plant, investment savings were substantial compared to other technologies available. In the solution purification, the key finding was that Co, Ni, and Cu formed specific arsenides in the “hot arsenic zinc dust” step. This was utilized for the development of a three-step purification stage based on fluidized bed technology in all three steps, i.e. removal of Cu, Co and Cd. Both precipitation rates and selectivity increased, which strongly decreased the zinc powder consumption through a substantially suppressed hydrogen gas evolution. Better selectivity improved the value of the precipitates: cadmium, which caused environmental problems in the copper smelter, was reduced from 1-3% reported normally down to 0.05 %, and a cobalt cake with 15 % Co was easily produced in laboratory experiments in the cobalt removal. The zinc powder consumption in the plant for a solution containing Cu, Co, Ni and Cd (1000, 25, 30 and 350 mg/l, respectively), was around 1.8 g/l; i.e. only 1.4 times the stoichiometric demand – or, about 60% saving in powder consumption. Two processes for direct leaching of the concentrate under atmospheric conditions were developed, one of which was implemented in the Kokkola zinc plant. Compared to the existing pressure leach technology, savings were obtained mostly in investment. The scientific basis for the most important processes and process improvements is given in the doctoral thesis. This includes mathematical modeling and thermodynamic evaluation of experimental results and hypotheses developed. Five of the processes developed in this research and development program were implemented in the plant and are still operated. Even though these processes were developed with the focus on the plant in Kokkola, they can also be implemented at low cost in most of the zinc plants globally, and have thus a great significance in the development of the electrolytic zinc process in general.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have demonstrated that central administration of zinc in minute amounts induces a significant antidipsogenic action in dehydrated rats as well as in rats under central cholinergic and angiotensinergic stimulation. Here we show that acute third ventricle injections of zinc also block water intake induced by central ß-adrenergic stimulation in Wistar rats (190-250 g). Central inhibition of opioid pathways by naloxone reverses the zinc-induced antidipsogenic effect in dehydrated rats. After 120 min, rats receiving third ventricle injections of isoproterenol (160 nmol/rat) exhibited a significant increase in water intake (5.78 ± 0.54 ml/100 g body weight) compared to saline-treated controls (0.15 ± 0.07 ml/100 g body weight). Pretreatment with zinc (3.0, 30.0 and 300.0 pmol/rat, 45 min before isoproterenol injection) blocked water intake in a dose-dependent way. At the highest dose employed a complete blockade was demonstrable (0.54 ± 0.2 ml/100 g body weight). After 120 min, control (NaAc-treated) dehydrated rats, as expected, exhibited a high water intake (7.36 ± 0.39 ml/100 g body weight). Central administration of zinc blocked this response (2.5 ± 0.77 ml/100 g body weight). Naloxone pretreatment (82.5 nmol/rat, 30 min before zinc administration) reverted the water intake to the high levels observed in zinc-free dehydrated animals (7.04 ± 0.56 ml/100 g body weight). These data indicate that zinc is able to block water intake induced by central ß-adrenergic stimulation and that zinc-induced blockade of water intake in dehydrated rats may be, at least in part, due to stimulation of central opioid peptides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amorphous phosphate granules are present in vertebrate and invertebrate organisms. The functions attributed to these structures depend on their mineral contents and organic matrix composition. In the present study we have determined zinc concentrations in the hepatopancreas of the crab Ucides cordatus from regions contaminated with zinc, and the elemental composition of hepatopancreal phosphate granules. Organisms were collected from the contaminated areas of Sepetiba Bay (SB) and Guanabara Bay (GB), and from a non-contaminated area, Ribeira Bay (RB). The first two sites are located near the metropolitan region of Rio de Janeiro city, Brazil. Atomic absorption spectroscopy (AAS) showed a significant difference (P<0.05) for zinc concentration in the hepatopancreas from organisms collected at the contaminated sites GB (210 ± 20 µg/g dry weight) and SB (181 ± 16 µg/g dry weight) compared to the non-contaminated site RB (76 ± 14 µg/g dry weight). Phosphate granules isolated from hepatopancreatic tissue were studied by electron diffraction (ED), energy dispersive X-ray analysis (EDX) and electron spectroscopic imaging (ESI). ED of granules presented no diffraction spots, indicating that these structures are in an amorphous state, while EDX of granules isolated from a contaminated area contained P, Ca and Zn. Mg, Cl and Fe were also found in some of the spectra. ESI showed that O, P and Ca were colocalized in the mineralized layers of most granules observed. The correlation between the results obtained by AAS and those obtained by microanalytical techniques suggests that the hepatopancreatic granules of U. cordatus may be related to the phenomenon of heavy metal retention.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We studied the effects of chronic intoxication with the heavy metals lead (Pb2+) and zinc (Zn2+) on memory formation in mice. Animals were intoxicated through drinking water during the pre- and postnatal periods and then tested in the step-through inhibitory avoidance memory task. Chronic postnatal intoxication with Pb2+ did not change the step-through latency values recorded during the 4 weeks of the test (ANOVA, P>0.05). In contrast, mice intoxicated during the prenatal period showed significantly reduced latency values when compared to the control group (day 1: q = 4.62, P<0.05; day 7: q = 4.42, P<0.05; day 14: q = 5.65, P<0.05; day 21: q = 3.96, P<0.05, and day 28: q = 6.09, P<0.05). Although chronic postnatal intoxication with Zn2+ did not alter a memory retention test performed 24 h after training, we noticed a gradual decrease in latency at subsequent 4-week intervals (F = 3.07, P<0.05), an effect that was not observed in the control or in the Pb2+-treated groups. These results suggest an impairment of memory formation by Pb2+ when the animals are exposed during the critical period of neurogenesis, while Zn2+ appears to facilitate learning extinction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lead has been shown to produce cognitive and motor deficits in young rats that could be mediated, at least in part, by inhibition of the zinc-containing heme biosynthetic enzyme delta-aminolevulinate dehydratase (ALA-D). In the present study we investigated the effects of lead and/or zinc treatment during the second stage of rapid postnatal brain development on brain, kidney and blood ALA-D specific activity, as well as the negative geotaxis behavior of rats. Eight-day-old Wistar rats were injected intraperitoneally with saline, lead acetate (8 mg/kg) and/or zinc chloride (2 mg/kg) daily for five consecutive days. Twenty-four hours after treatment, ALA-D activity was determined in the absence and presence of DL-dithiothreitol (DTT). The negative geotaxis behavior was assessed in 9- to 13-day-old rats. Treatment with lead and/or zinc did not affect body, brain or kidney weights or brain- or kidney-to-body weight ratios of the animals. In spite of the absence of effect of any treatment on ALA-D specific activity in brain, kidney and blood, the reactivation index with DTT was higher in the groups treated with lead or lead + zinc than in the control group, in brain, kidney and blood (mean ± SEM; brain: 33.33 ± 4.34, 38.90 ± 8.24, 13.67 ± 3.41; kidney: 33.50 ± 2.97, 37.60 ± 2.67, 15.80 ± 2.66; blood: 63.95 ± 3.73, 56.43 ± 5.93, 31.07 ± 4.61, respectively, N = 9-11). The negative geotaxis response behavior was not affected by lead and/or zinc treatment. The results indicate that lead and/or zinc treatment during the second stage of rapid postnatal brain growth affected ALA-D, but zinc was not sufficient to protect the enzyme from the effects of lead in brain, kidney and blood.