977 resultados para work system method
Resumo:
The objective of this research was to characterize the inter-annual variability of the viticultural climate of the wine regions of Brazil. The survey used a long sets of climatic data base of regions: in the South if Brazil ? Serra Gaúcha, Serra do Sudeste, Campanha, Campos de Cima da Serra and Planalto Catarinense; in the Northeast of Brazil ? Submédio São Francisco. The ?Géoviticulture MCC System? method was used with its 3 climatic indices: Heliothermal Index (HI), Cool Night Index (CI) and Dryness Index (DI).
Resumo:
The choice of an information systems is a critical factor of success in an organization's performance, since, by involving multiple decision-makers, with often conflicting objectives, several alternatives with aggressive marketing, makes it particularly complex by the scope of a consensus. The main objective of this work is to make the analysis and selection of a information system to support the school management, pedagogical and administrative components, using a multicriteria decision aid system – MMASSITI – Multicriteria Method- ology to Support the Selection of Information Systems/Information Technologies – integrates a multicriteria model that seeks to provide a systematic approach in the process of choice of Information Systems, able to produce sustained recommendations concerning the decision scope. Its application to a case study has identi- fied the relevant factors in the selection process of school educational and management information system and get a solution that allows the decision maker’ to compare the quality of the various alternatives.
Resumo:
This work presents an automatic calibration method for a vision based external underwater ground-truth positioning system. These systems are a relevant tool in benchmarking and assessing the quality of research in underwater robotics applications. A stereo vision system can in suitable environments such as test tanks or in clear water conditions provide accurate position with low cost and flexible operation. In this work we present a two step extrinsic camera parameter calibration procedure in order to reduce the setup time and provide accurate results. The proposed method uses a planar homography decomposition in order to determine the relative camera poses and the determination of vanishing points of detected lines in the image to obtain the global pose of the stereo rig in the reference frame. This method was applied to our external vision based ground-truth at the INESC TEC/Robotics test tank. Results are presented in comparison with an precise calibration performed using points obtained from an accurate 3D LIDAR modelling of the environment.
Resumo:
Natural systems are inherently non linear. Recurrent behaviours are typical of natural systems. Recurrence is a fundamental property of non linear dynamical systems which can be exploited to characterize the system behaviour effectively. Cross recurrence based analysis of sensor signals from non linear dynamical system is presented in this thesis. The mutual dependency among relatively independent components of a system is referred as coupling. The analysis is done for a mechanically coupled system specifically designed for conducting experiment. Further, cross recurrence method is extended to the actual machining process in a lathe to characterize the chatter during turning. The result is verified by permutation entropy method. Conventional linear methods or models are incapable of capturing the critical and strange behaviours associated with the dynamical process. Hence any effective feature extraction methodologies should invariably gather information thorough nonlinear time series analysis. The sensor signals from the dynamical system normally contain noise and non stationarity. In an effort to get over these two issues to the maximum possible extent, this work adopts the cross recurrence quantification analysis (CRQA) methodology since it is found to be robust against noise and stationarity in the signals. The study reveals that the CRQA is capable of characterizing even weak coupling among system signals. It also divulges the dependence of certain CRQA variables like percent determinism, percent recurrence and entropy to chatter unambiguously. The surrogate data test shows that the results obtained by CRQA are the true properties of the temporal evolution of the dynamics and contain a degree of deterministic structure. The results are verified using permutation entropy (PE) to detect the onset of chatter from the time series. The present study ascertains that this CRP based methodology is capable of recognizing the transition from regular cutting to the chatter cutting irrespective of the machining parameters or work piece material. The results establish this methodology to be feasible for detection of chatter in metal cutting operation in a lathe.
Resumo:
Conselho Nacional de Desenvolvimento Ciêntífico e Tecnológico (CNPq)
Resumo:
Progress toward elucidating the 3D structures of eukaryotic membrane proteins has been hampered by the lack of appropriate expression systems. Recent work using the Xenopus oocyte as a novel expression system for structural analysis demonstrates the capability of providing not only the significant amount of protein yields required for structural work but also the expression of eukaryotic membrane proteins in a more native and functional conformation. There is a long history using the oocyte expression system as an efficient tool for membrane transporter and channel expression in direct functional analysis, but improvements in robotic injection systems and protein yield optimization allow the rapid scalability of expressed proteins to be purified and characterized in physiologically relevant structural states. Traditional overexpression systems (yeast, bacteria, and insect cells) by comparison require chaotropic conditions over several steps for extraction, solubilization, and purification. By contrast, overexpressing within the oocyte system for subsequent negative-staining transmission electron microscopy studies provides a single system that can functionally assess and purify eukaryotic membrane proteins in fewer steps maintaining the physiological properties of the membrane protein.
Resumo:
The construction industry is characterised by fragmentation and suffers from lack of collaboration, often adopting adversarial working practices to achieve deliverables. For the UK Government and construction industry, BIM is a game changer aiming to rectify this fragmentation and promote collaboration. However it has become clear that there is an essential need to have better controls and definitions of both data deliverables and data classification. Traditional methods and techniques for collating and inputting data have shown to be time consuming and provide little to improve or add value to the overall task of improving deliverables. Hence arose the need in the industry to develop a Digital Plan of Work (DPoW) toolkit that would aid the decision making process, providing the required control over the project workflows and data deliverables, and enabling better collaboration through transparency of need and delivery. The specification for the existing Digital Plan of Work (DPoW) was to be, an industry standard method of describing geometric, requirements and data deliveries at key stages of the project cycle, with the addition of a structured and standardised information classification system. However surveys and interviews conducted within this research indicate that the current DPoW resembles a digitised version of the pre-existing plans of work and does not push towards the data enriched decision-making abilities that advancements in technology now offer. A Digital Framework is not simply the digitisation of current or historic standard methods and procedures, it is a new intelligent driven digital system that uses new tools, processes, procedures and work flows to eradicate waste and increase efficiency. In addition to reporting on conducted surveys above, this research paper will present a theoretical investigation into usage of Intelligent Decision Support Systems within a digital plan of work framework. Furthermore this paper will present findings on the suitability to utilise advancements in intelligent decision-making system frameworks and Artificial Intelligence for a UK BIM Framework. This should form the foundations of decision-making for projects implemented at BIM level 2. The gap identified in this paper is that the current digital toolkit does not incorporate the intelligent characteristics available in other industries through advancements in technology and collation of vast amounts of data that a digital plan of work framework could have access to and begin to develop, learn and adapt for decision-making through the live interaction of project stakeholders.
Resumo:
* This work was financially supported by RFBR-04-01-00858.
Resumo:
In this work the new pattern recognition method based on the unification of algebraic and statistical approaches is described. The main point of the method is the voting procedure upon the statistically weighted regularities, which are linear separators in two-dimensional projections of feature space. The report contains brief description of the theoretical foundations of the method, description of its software realization and the results of series of experiments proving its usefulness in practical tasks.
Resumo:
Use of modern object-oriented methods of designing of information systems (IS) both descriptions of interrelations IS and automated with its help business-processes of the enterprises leads to necessity of construction uniform complete IS on the basis of set of local models of such system. As a result of use of such approach there are the contradictions caused by inconsistency of actions of separate developers IS with each other and that is much more important, inconsistency of the points of view of separate users IS. Besides similar contradictions arise while in service IS at the enterprise because of constant change separate business- processes of the enterprise. It is necessary to note also, that now overwhelming majority IS is developed and maintained as set of separate functional modules. Each of such modules can function as independent IS. However the problem of integration of separate functional modules in uniform system can lead to a lot of problems. Among these problems it is possible to specify, for example, presence in modules of functions which are not used by the enterprise to destination, to complexity of information and program integration of modules of various manufacturers, etc. In most cases these contradictions and the reasons, their caused, are consequence of primary representation IS as equilibrium steady system. In work [1] representation IS as dynamic multistable system which is capable to carry out following actions has been considered:
Resumo:
Owing to the limited cell size of eNodeB (eNB), the relay node has emerged as an attractive solution for the long-term evolution (LTE) system. The nonlinear limit of the alternative method to multipleinput and multiple-output (MIMO) based on frequency division multiplexing (FDM) for orthogonal FDM (OFDM) is analysed over varying transmission spans. In this reported work, it is shown that the degradation pattern over the linear, intermixing and nonlinear propagation regions is consistent for the 2 and the 2.6 GHz bands. The proposed bands experienced a linear increase in the error vector magnitude (EVM) for both the linear and the nonlinear regions proportional to the increasing transmission spans. In addition, an optical launch power between -2 and 2 dBm achieved a significantly lower EVM than the LTE limit of 8% for the 10-60 km spans. © The Institution of Engineering and Technology 2014.
Resumo:
In this work, we propose natural rubber latex (NRL) membranes as a protein delivery system. For this purpose Bovine Serum Albumin (BSA) was incorporated into the latex solution for in vitro protein delivery experiments. Different polymerization temperatures were used, from -10 to 27 °C, in order to control the membrane morphology. These membranes were characterized by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), as well as the Lowry Method to measure the BSA release. SEM and AFM microscopy analysis showed that the number, size and distribution of pores in NRL membranes can be varied, as well as its overall morphology. We have found that the morphology of the membrane is the predominant factor for higher protein release, compared with pore size and number of pores. Results demonstrated that the best drug-delivery system was the membrane polymerized at RT (27 °C), which does release 66% of its BSA content for up to 18 days. Our results indicate that NRLb could be used in the future as an active membrane that could accelerate bone healing in GBR.
Resumo:
The objective of this work was to develop and validate a rapid Reversed-Phase High-Performance Liquid Chromatography method for the quantification of 3,5,3 '-triiodothyroacetic acid (TRIAC) in nanoparticles delivery system prepared in different polymeric matrices. Special attention was given to developing a reliable reproductive technique for the pretreatment of the samples. Chromatographic runs were performed on an Agilent 1200 Series HPLC with a RP Phenomenex (R) Gemini C18 (150 x 4, 6 mm i.d., 5 mu m) column using acetonitrile and triethylamine buffer 0.1% (TEA) (40 : 60 v/v) as a mobile phase in an isocratic elution, pH 5.6 at a flow rate of 1 ml min(-1). TRIAC was detected at a wavelength of 220 nm. The injection volume was 20 mu l and the column temperature was maintained at 35 degrees C. The validation characteristics included accuracy, precision, specificity, linearity, recovery, and robustness. The standard curve was found to have a linear relationship (r(2) - 0.9996) over the analytical range of 5-100 mu g ml(-1) . The detection and quantitation limits were 1.3 and 3.8 mu g ml(-1), respectively. The recovery and loaded TRIAC in colloidal system delivery was nearly 100% and 98%, respectively. The method was successfully applied in polycaprolactone, polyhydroxybutyrate, and polymethylmethacrylate nanoparticles.
Resumo:
We obtain the exact nonequilibrium work generating function (NEWGF) for a small system consisting of a massive Brownian particle connected to internal and external springs. The external work is provided to the system for a finite-time interval. The Jarzynski equality, obtained in this case directly from the NEWGF, is shown to be valid for the present model, in an exact way regardless of the rate of external work.