932 resultados para weight exercise


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We evaluated the effects of a low intensity aerobic exercise protocol on cardiac remodeling and myocardial function in diabetic rats. Wistar rats were assigned into four groups: sedentary control (C-Sed), exercised control (C-Ex), sedentary diabetes (DM-Sed), and exercised diabetes (DM-Ex). Diabetes was induced by intraperitoneal injection of streptozotocin. Rats exercised for 9 weeks in treadmill at 11 m/min, 18 min/day. Myocardial function was evaluated in left ventricular (LV) papillary muscles and oxidative stress in LV tissue. Statistical analysis was given by ANOVA or Kruskal-Wallis. Echocardiogram showed diabetic groups with higher LV diastolic diameter-to-body weight ratio and lower posterior wall shortening velocity than controls. Left atrium diameter was lower in DM-Ex than DM-Sed (C-Sed: 5.73 ± 0.49; C-Ex: 5.67 ± 0.53; DM-Sed: 6.41 ± 0.54; DM-Ex: 5.81 ± 0.50 mm; P < 0.05 DM-Sed vs C-Sed and DM-Ex). Papillary muscle function was depressed in DM-Sed compared to C-Sed. Exercise attenuated this change in DM-Ex. Lipid hydroperoxide concentration was higher in DM-Sed than C-Sed and DM-Ex. Catalase and superoxide dismutase activities were lower in diabetics than controls and higher in DM-Ex than DM-Sed. Glutathione peroxidase activity was lower in DM-Sed than C-Sed and DM-Ex. Conclusion. Low intensity exercise attenuates left atrium dilation and myocardial oxidative stress and dysfunction in type 1 diabetic rats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose The aim of the present study was to evaluate the effects of intensity and interval of recovery on performance in the bench press exercise, and the response of salivary lactate and alpha amylase levels. Methods Ten sportsman (aged 29 ± 4 years; body mass index 26 ± 2 kg/cm2 ) were divided in two groups: G70 (performing a bench press exercise at 70 % one repetition maximum—1RM), and G90 (performing a bench press exercise at 90 %—1RM). All groups were engaged in three intervals of recovery (30, 60 and 90 s). The maximum number of repetitions (MNR) and total weight lifted were computed, and saliva samples were collected 15 min before and after different intervals of recovery. For the comparison of the performance and biochemistry parameters, ANOVA tests for repeated measurements were conducted, with a significance level set at 5 %. Results In G70, the 30 s MNR was lower than the 60 and 90 s intervals of recovery (p\0.05) and the MNR with the 60 s interval of recovery was lower than the 90 s interval of recovery (p\0.041). Similarly, in G90 with the 30 s of interval of recovery, the sets were lower than observed with the 60 and 90 s (p\0.05), and MNR with the 60 s interval of recovery was lower than the 90 s interval of recovery (p\0.05). The salivary lactate showed an increase after exercise (p\0.05) when compared with the rest period for all groups, and no effects were observed for salivary alpha amylase. Conclusions Based on this result, the sets and reps can be modified to change the recovery time. This effect is very useful to improve the performance in relationship to different fitness levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aimed to develop an equipment and system of resistance exercise (RE), based on squat-type exercise for rodents, with control of training variables. We developed an operant conditioning system composed of sound, light and feeding devices that allowed optimized RE performance by the animal. With this system, it is not necessary to impose fasting or electric shock for the animal to perform the task proposed (muscle contraction). Furthermore, it is possible to perform muscle function tests in vivo within the context of the exercise proposed and control variables such as intensity, volume (sets and repetitions), and exercise session length, rest interval between sets and repetitions, and concentric strength. Based on the experiments conducted, we demonstrated that the model proposed is able to perform more specific control of other RE variables, especially rest interval between sets and repetitions, and encourages the animal to exercise through short-term energy restriction and "disturbing" stimulus that do not promote alterations in body weight. Therefore, despite experimental limitations, we believe that this RE apparatus is closer to the physiological context observed in humans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim: The aim of this study was to investigate the impact of circuit-based exercise on the body composition in obese older women by focusing on physical exercise and body weight (BW) gain control in older people. Methods: Seventy older women (>60 years old) voluntarily took part in the study. Participants were randomized into six different groups according to body mass index (BMI): appropriate weight (AW) control (AWC) and trained (AWT) groups, overweight (OW) control (OWC) and trained (OWT) groups, and obesity (O) control (OC) and trained (OT) groups. The exercise program consisted of 50 minutes of exercise three times per week for 12 weeks. The exercises were alternated between upper and lower body using rest between sets for 40 seconds with intensity controlled by heart rate (70% of work). The contraction time established was 5 seconds to eccentric and concentric muscular action phase. The following anthropometric parameters were evaluated: height (m), body weight (BW, kg), body fat (BF, %), fat mass (FM, kg), lean mass (LM, kg), and BMI (kg/m(2)). Results: The values (mean +/- standard deviation [SD]) of relative changes to BW (-8.0% +/- 0.8%), BF (-21.4% +/- 2.1%), LM (3.0% +/- 0.3%), and FM (-31.2% +/- 3.0%) to the OT group were higher (P < .05) than in the AWT (BW: -2.0% +/- 1.1%; BF: -4.6% +/- 1.8%; FM: -7.0% +/- 2.8%; LM: 0.2% +/- 1.1%) and OWT (BW: -4.5% +/- 1.0%; BF: -11.0% +/- 2.2%; FM: -16.1% +/- 3.2%; LM: -0.2% +/- 1.0%) groups; additionally, no differences were found for C groups. While reduction (P < .03) in BMI according to absolute values was observed for all trained groups (AWT: 22 +/- 1 versus 21 +/- 1; OWT: 27 +/- 1 versus 25 +/- 1, OT: 34 +/- 1 versus 30 +/- 1) after training, no differences were found for C groups. Conclusion: In summary, circuit-based exercise is an effective method for promoting reduction in anthropometrics parameters in obese older women.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to evaluate the effect of creatine supplementation on muscle and plasma markers of oxidative stress after acute aerobic exercise. A total of 64 Wistar rats were divided into two groups: control group (n = 32) and creatine-supplemented group (n = 32). Creatine supplementation consisted of the addition of 2% creatine monohydrate to the diet. After 28 days, the rats performed an acute moderate aerobic exercise bout (1-h swimming with 4% of total body weight load). The animals were killed before (pre) and at 0, 2 and 6 h (n = 8) after acute exercise. As expected, plasma and total muscle creatine concentrations were significantly higher (P < 0.05) in the creatine-supplemented group compared to control. Acute exercise increased plasma thiobarbituric acid reactive species (TBARS) and total lipid hydroperoxide. The same was observed in the soleus and gastrocnemius muscles. Creatine supplementation decreased these markers in plasma (TBARS: pre 6%, 0 h 25%, 2 h 27% and 6 h 20%; plasma total lipid hydroperoxide: pre 38%, 0 h 24%, 2 h 12% and 6 h 20%, % decrease). Also, acute exercise decreased the GSH/GSSG ratio in soleus muscle, which was prevented by creatine supplementation (soleus: pre 8%, 0 h 29%, 2 h 30% and 6 h 44%, % prevention). The results show that creatine supplementation inhibits increased oxidative stress markers in plasma and muscle induced by acute exercise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Paulo CA, Roschel H, Ugrinowitsch C, Kobal R and Tricoli V. Influence of different resistance exercise loading schemes on mechanical power output in work to rest ratio-equated and -nonequated conditions. J Strength Cond Res 26(5): 1308-1312, 2012-It is well known that most sports are characterized by the performance of intermittent high-intensity actions, requiring high muscle power production within different intervals. In fact, the manipulation of the exercise to rest ratio in muscle power training programs may constitute an interesting strategy when considering the specific performance demand of a given sport modality. Thus, the aim of this study was to evaluate the influence of different schemes of rest intervals and number of repetitions per set on muscle power production in the squat exercise between exercise to rest ratio-equated and -nonequated conditions. Nineteen young males (age: 25.7 +/- 4.4 years; weight: 81.3 +/- 13.7 kg; height: 178.1 +/- 5.5 cm) were randomly submitted to 3 different resistance exercise loading schemes, as follows: short-set short-interval condition (SSSI; 12 sets of 3 repetitions with a 27.3-second interval between sets); short-set long-interval condition (SSLI; 12 sets of 3 repetitions with a 60-second interval between sets); long-set long-interval (LSLI; 6 sets of 6 repetitions with a 60-second rest interval between sets). The main finding of the present study is that the lower exercise to rest ratio protocol (SSLI) resulted in greater average power production (601.88 +/- 142.48 W) when compared with both SSSI and LSLI (581.86 +/- 113.18 W; 578 +/- 138.78 W, respectively). Additionally, both the exercise to rest ratio-equated conditions presented similar performance and metabolic results. In summary, these findings suggest that shorter rest intervals may fully restore the individual's ability to produce muscle power if a smaller exercise volume per set is performed and that lower exercise to rest ratio protocols result in greater average power production when compared with higher ratio ones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bearing in mind that cancer cachexia is associated with chronic systemic inflammation and that endurance training has been adopted as a nonpharmacological anti-inflammatory strategy, we examined the effect of 8 weeks of moderate intensity exercise upon the balance of anti-and pro-inflammatory cytokines in 2 different depots of white adipose tissue in cachectic tumour-bearing (Walker-256 carcinosarcoma) rats. Animals were assigned to a sedentary control (SC), sedentary tumour-bearing (ST), sedentary pair-fed (SPF) or exercise control (EC), exercise tumour-bearing (ET), and exercise pair-fed (EPF) group. Trained rats ran on a treadmill (60% VO(2)max) 60 min/day, 5 days/week, for 8 weeks. The retroperitoneal (RPAT) and mesenteric (MEAT) adipose pads were excised and the mRNA (RT-PCR) and protein (ELISA) expression of IL-1 beta, IL-6, TNF-alpha, and IL-10 were evaluated. The number of infiltrating monocytes in the adipose tissue was increased in cachectic rats. TNF-alpha mRNA in MEAT was increased in the cachectic animals (p < 0.05) in relation to SC. RPAT protein expression of all studied cytokines was increased in cachectic animals in relation to SC and SPF (p < 0.05). In this pad, IL-10/TNF-alpha ratio was reduced in the cachectic animals in comparison with SC (p < 0.05) indicating inflammation. Exercise training improved IL-10/TNF-alpha ratio and induced a reduction of the infiltrating monocytes both in MEAT and RPAT (p < 0.05), when compared with ST. We conclude that cachexia is associated with inflammation of white adipose tissue and that exercise training prevents this effect in the MEAT, and partially in RPAT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: Obesity and renin angiotensin system (RAS) hyperactivity are profoundly involved in cardiovascular diseases, however aerobic exercise training (EXT) can prevent obesity and cardiac RAS activation. The study hypothesis was to investigate whether obesity and its association with EXT alter the systemic and cardiac RAS components in an obese Zucker rat strain. Methods: The rats were divided into the following groups: Lean Zucker rats (LZR); lean Zucker rats plus EXT (LZR+EXT); obese Zucker rats (OZR) and obese Zucker rats plus EXT (OZR+EXT). EXT consisted of 10 weeks of 60-min swimming sessions, 5 days/week. At the end of the training protocol heart rate (HR), systolic blood pressure (SBP), cardiac hypertrophy (CH) and function, local and systemic components of RAS were evaluated. Also, systemic glucose, triglycerides, total cholesterol and its LDL and HDL fractions were measured. Results: The resting HR decreased (, 12%) for both LZR+EXT and OZR+EXT. However, only the LZR+EXT reached significance (p, 0.05), while a tendency was found for OZR versus OZR+EXT (p = 0.07). In addition, exercise reduced (57%) triglycerides and (61%) LDL in the OZR+EXT. The systemic angiotensin I-converting enzyme (ACE) activity did not differ regardless of obesity and EXT, however, the OZR and OZR+EXT showed (66%) and (42%), respectively, less angiotensin II (Ang II) plasma concentration when compared with LZR. Furthermore, the results showed that EXT in the OZR prevented increase in CH, cardiac ACE activity, Ang II and AT2 receptor caused by obesity. In addition, exercise augmented cardiac ACE2 in both training groups. Conclusion: Despite the unchanged ACE and lower systemic Ang II levels in obesity, the cardiac RAS was increased in OZR and EXT in obese Zucker rats reduced some of the cardiac RAS components and prevented obesity-related CH. These results show that EXT prevented the heart RAS hyperactivity and cardiac maladaptive morphological alterations in obese Zucker rats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background Evidences have showed that the incidence of arterial hypertension is greater in postmenopausal women as compared to premenopausal. Physical inactivity has been implicated as a major contributor to weight gain and abdominal obesity in postmenopausal women and the incidence of cardiovascular disease increases dramatically after menopause. Additionally, more women than men die each year of coronary heart disease and are twice as likely as men to die within the first year after a heart attack. A healthy lifestyle has been strongly associated with the regular physical activity and evidences have shown that physically active subjects have more longevity with reduction of morbidity and mortality. Nitric oxide (NO) produced by endothelial cells has been implicated in this beneficial effect with improvement of vascular relaxing and reduction in blood pressure in both laboratory animals and human. Although the effect of exercise training in the human cardiovascular system has been largely studied, the majority of these studies were predominantly conducted in men or young volunteers. Therefore, the aim of this work was to investigate the effects of 6 months of dynamic exercise training (ET) on blood pressure and plasma nitrate/nitrite concentration (NOx-) in hypertensive postmenopausal women. Methods Eleven volunteers were submitted to the ET consisting in 3 days a week, each session of 60 minutes during 6 months at moderate intensity (50% of heart rate reserve). Anthropometric parameters, blood pressure, NOx- concentration were measured at initial time and after ET. Results A significant reduction in both systolic and diastolic blood pressure values was seen after ET which was accompanied by markedly increase of NOx- levels (basal: 10 ± 0.9; ET: 16 ± 2 μM). Total cholesterol was significantly reduced (basal: 220 ± 38 and ET: 178 ± 22 mg/dl), whereas triglycerides levels were not modified after ET (basal: 141 ± 89 and ET: 147 ± 8 mg/dl). Conclusion Our study shows that changing in lifestyle promotes reduction of arterial pressure which was accompanied by increase in nitrite/nitrate concentration. Therefore, 6-months of exercise training are an important approach in management arterial hypertension and play a protective effect in postmenopausal women.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background The increase in fructose consumption is paralleled by a higher incidence of metabolic syndrome, and consequently, cardiovascular disease mortality. We examined the effects of 8 weeks of low intensity exercise training (LET) on metabolic, hemodynamic, ventricular and vascular morphological changes induced by fructose drinking in male rats. Methods Male Wistar rats were divided into (n = 8 each) control (C), sedentary fructose (F) and ET fructose (FT) groups. Fructose-drinking rats received D-fructose (100 g/l). FT rats were assigned to a treadmill training protocol at low intensity (30% of maximal running speed) during 1 h/day, 5 days/week for 8 weeks. Measurements of triglyceride concentrations, white adipose tissue (WAT) and glycemia were carried out together with insulin tolerance test to evaluate metabolic profile. Arterial pressure (AP) signals were directly recorded. Baroreflex sensitivity (BS) was evaluated by the tachycardic and bradycardic responses. Right atria, left ventricle (LV) and ascending aorta were prepared to morphoquantitative analysis. Results LET reduced WAT (−37.7%), triglyceride levels (−33%), systolic AP (−6%), heart weight/body weight (−20.5%), LV (−36%) and aortic (−76%) collagen fibers, aortic intima-media thickness and circumferential wall tension in FT when compared to F rats. Additionally, FT group presented improve of BS, numerical density of atrial natriuretic peptide granules (+42%) and LV capillaries (+25%), as well as the number of elastic lamellae in aorta compared with F group. Conclusions Our data suggest that LET, a widely recommended practice, seems to be particularly effective for preventing metabolic, hemodynamic and morphological disorders triggered by MS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pineal gland, through melatonin, seems to be of fundamental importance in determining the metabolic adaptations of adipose and muscle tissues to physical training. Evidence shows that pinealectomized animals fail to develop adaptive metabolic changes in response to aerobic exercise and therefore do not exhibit the same performance as control-trained animals. The known prominent reduction in melatonin synthesis in aging animals led us to investigate the metabolic adaptations to physical training in aged animals with and without daily melatonin replacement. Male Wistar rats were assigned to four groups: sedentary control (SC), trained control (TC), sedentary treated with melatonin (SM), and trained treated with melatonin (TM). Melatonin supplementation lasted 16 wk, and the animals were subjected to exercise during the last 8 wk of the experiment. After euthanasia, samples of liver, muscle, and adipose tissues were collected for analysis. Trained animals treated with melatonin presented better results in the following parameters: glucose tolerance, physical capacity, citrate synthase activity, hepatic and muscular glycogen content, body weight, protein expression of phosphatidylinositol 3-kinase (PI3K), mitogen-activated protein kinase (MAPK), and protein kinase activated by adenosine monophosphate (AMPK) in the liver, as well as the protein expression of the glucose transporter type 4 (GLUT4) and AMPK in the muscle. In conclusion, these results demonstrate that melatonin supplementation in aging animals is of great importance for the required metabolic adaptations induced by aerobic exercise. Adequate levels of circulating melatonin are, therefore, necessary to improve energetic metabolism efficiency, reducing body weight and increasing insulin sensitivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As the size of adipocytes increases during obesity, the establishment of resident immune cells in adipose tissue becomes an important source of proinflammatory mediators. Exercise and caloric restriction are two important, nonpharmacological tools against body mass increase. To date, their effects on the immune cells of adipose tissue in obese organisms, specifically when a high-fat diet is consumed, have been poorly investigated. Thus, after consuming a high-fat diet, mice were submitted to chronic swimming training or a 30% caloric restriction in order to investigate the effects of both interventions on resident immune cells in adipose tissue. These strategies were able to reduce body mass and resulted in changes in the number of resident immune cells in the adipose tissue and levels of cytokines/chemokines in serum. While exercise increased the number of NK cells in adipose tissue and serum levels of IL-6 and RANTES, caloric restriction increased the CD4+/CD8+ cell ratio and MCP-1 levels. Together, these data demonstrated that exercise and caloric restriction modulate resident immune cells in adipose tissues differently in spite of an equivalent body weight reduction. Additionally, the results also reinforce the idea that a combination of both strategies is better than either individually for combating obesity

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES: We evaluated the effects of aerobic exercise training without dietary changes on cardiovascular and metabolic variables and on the expression of glucose transporter Type 4 in rats with metabolic syndrome. METHODS: Twenty male spontaneously hypertensive rats received monosodium glutamate during the neonatal period. The animals were allocated to the following groups: MS (sedentary metabolic syndrome), MS-T (trained on a treadmill for 1 hour/day, 5 days/week for 10 weeks), H (sedentary spontaneously hypertensive rats) and H-T (trained spontaneously hypertensive rats). The Lee index, blood pressure (tail-cuff system), insulin sensitivity (insulin tolerance test) and functional capacity were evaluated before and after 10 weeks of training. Glucose transporter Type 4 expression was analyzed using Western blotting. The data were compared using analysis of variance (ANOVA) (p<0.05). RESULTS: At baseline, the MS rats exhibited lower insulin sensitivity and increased Lee index compared with the H rats. Training decreased the body weight and Lee index of the MS rats (MS-T vs. MS), but not of the H rats (H-T vs. H). There were no differences in food intake between the groups. At the end of the experiments, the systolic blood pressure was lower in the two trained groups than in their sedentary controls. Whole-body insulin sensitivity increased in the trained groups. Glucose transporter Type 4 content increased in the heart, white adipose tissue and gastrocnemius muscle of the trained groups relative to their respective untrained groups. CONCLUSION: In conclusion, the present study shows that an isolated aerobic exercise training intervention is an efficient means of improving several components of metabolic syndrome, that is, training reduces obesity and hypertension and increases insulin sensitivity

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] That muscular blood flow may reach 2.5 l kg(-1) min(-1) in the quadriceps muscle has led to the suggestion that muscular vascular conductance must be restrained during whole body exercise to avoid hypotension. The main aim of this study was to determine the maximal arm and leg muscle vascular conductances (VC) during leg and arm exercise, to find out if the maximal muscular vasodilatory response is restrained during maximal combined arm and leg exercise. Six Swedish elite cross-country skiers, age (mean +/-s.e.m.) 24 +/- 2 years, height 180 +/- 2 cm, weight 74 +/- 2 kg, and maximal oxygen uptake (VO(2,max)) 5.1 +/- 0.1 l min(-1) participated in the study. Femoral and subclavian vein blood flows, intra-arterial blood pressure, cardiac output, as well as blood gases in the femoral and subclavian vein, right atrium and femoral artery were determined during skiing (roller skis) at approximately 76% of VO(2,max) and at VO(2,max) with different techniques: diagonal stride (combined arm and leg exercise), double poling (predominantly arm exercise) and leg skiing (predominantly leg exercise). During submaximal exercise cardiac output (26-27 l min(-1)), mean blood pressure (MAP) (approximately 87 mmHg), systemic VC, systemic oxygen delivery and pulmonary VO2(approximately 4 l min(-1)) attained similar values regardless of exercise mode. The distribution of cardiac output was modified depending on the musculature engaged in the exercise. There was a close relationship between VC and VO2 in arms (r= 0.99, P < 0.001) and legs (r= 0.98, P < 0.05). Peak arm VC (63.7 +/- 5.6 ml min(-1) mmHg(-1)) was attained during double poling, while peak leg VC was reached at maximal exercise with the diagonal technique (109.8 +/- 11.5 ml min(-1) mmHg(-1)) when arm VC was 38.8 +/- 5.7 ml min(-1) mmHg(-1). If during maximal exercise arms and legs had been vasodilated to the observed maximal levels then mean arterial pressure would have dropped at least to 75-77 mmHg in our experimental conditions. It is concluded that skeletal muscle vascular conductance is restrained during whole body exercise in the upright position to avoid hypotension.