996 resultados para wave modes
Resumo:
The British agricultural sector is either already in or rapidly approaching some sort of crisis. Two features are particularly significant in the political response to the current situation. First, there is an increasingly neoliberal approach to agricultural policy. Sec end, agricultural policy per se is being subsumed with wider rural policies. In this paper we question the rationality of both these trends, both theoretically through 'new wave regulation theory' and by relating the British situation to the recent experiences of the agricultural sectors in Australia and New Zealand.
Resumo:
We describe the classical and quantum two-dimensional nonlinear dynamics of large blue-detuned evanescent-wave guiding cold atoms in hollow fiber. We show that chaotic dynamics exists for classic dynamics, when the intensity of the beam is periodically modulated. The two-dimensional distributions of atoms in (x,y) plane are simulated. We show that the atoms will accumulate on several annular regions when the system enters a regime of global chaos. Our simulation shows that, when the atomic flux is very small, a similar distribution will be obtained if we detect the atomic distribution once each the modulation period and integrate the signals. For quantum dynamics, quantum collapses, and revivals appear. For periodically modulated optical potential, the variance of atomic position will be suppressed compared to the no modulation case. The atomic angular momentum will influence the evolution of wave function in two-dimensional quantum system of hollow fiber.
Resumo:
The action of water waves moving over a porous seabed drives a seepage flux into and out of the marine sediments. The volume of fluid exchange per wave cycle may affect the rate of contaminant transport in the sediments. In this paper, the dynamic response of the seabed to ocean waves is treated analytically on the basis of pore-elastic theory applied to a porous seabed. The seabed is modelled as a semi-infinite, isotropic, homogeneous material. Most previous investigations on the wave-seabed interaction problem have assumed quasi-static conditions within the seabed, although dynamic behaviour often occurs in natural environments. Furthermore, wave pressures used in the previous approaches were obtained from conventional ocean wave theories: which are based on the assumption of an impermeable rigid seabed. By introducing a complex wave number, we derive a new wave dispersion equation, which includes the seabed characteristics (such as soil permeability, shear modulus, etc.). Based on the new closed-form analytical solution, the relative differences of the wave-induced seabed response under dynamic and quasi-static conditions are examined. The effects of wave and soil parameters on the seepage flux per wave cycle are also discussed in detail. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Cold rubidium atoms are subjected to an amplitude-modulated far-detuned standing wave of light to form a quantum-driven pendulum. Here we discuss the dynamics of these atoms. Phase space resonances and chaotic transients of the system exhibit dynamics which can be useful in many atom optics applications as they can be utilized as means for phase space state preparation. We explain the occurrence of distinct peaks in the atomic momentum distribution, analyse them in detail and give evidence for the importance of the system for quantum chaos and decoherence studies.
Resumo:
Considerable effort has been devoted to quantifying the wave-induced soil response in a porous seabed in the last few decades. Most previous investigations have focused on the analysis of pore pressure and effective stresses within isotropic sediments, despite strong evidence of anisotropic soil behaviour reported in the literature. Furthermore, the seepage flux, which is important in the context of contaminant transport, has not been examined. In this paper, we focus on water wave-driven seepage in anisotropic marine sediments of finite thickness. The numerical results predict that the effects of hydraulic anisotropy and anisotropic soil behaviour on the wave-driven seepage in marine sediment are significant. Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
Shear deformation of fault gouge or other particulate materials often results in observed strain localization, or more precisely, the localization of measured deformation gradients. In conventional elastic materials the strain localization cannot take place therefore this phenomenon is attributed to special types of non-elastic constitutive behaviour. For particulate materials however the Cosserat continuum which takes care of microrotations independent of displacements is a more appropriate model. In elastic Cosserat continuum the localization in displacement gradients is possible under some combinations of the generalized Cosserat elastic moduli. The same combinations of parameters also correspond to a considerable dispersion in shear wave propagation which can be used for independent experimental verification of the proposed mechanism of apparent strain localization in fault gouge.
Resumo:
The biological species (biospecies) concept applies only to sexually reproducing species, which means that until sexual reproduction evolved, there were no biospecies. On the universal tree of life, biospecies concepts therefore apply only to a relatively small number of clades, notably plants and animals. I argue that it is useful to treat the various ways of being a species (species modes) as traits of clades. By extension from biospecies to the other concepts intended to capture the natural realities of what keeps taxa distinct, we can treat other modes as traits also, and so come to understand that the plurality of species concepts reflects the biological realities of monophyletic groups. We should expect that specialists in different organisms will tend to favour those concepts that best represent the intrinsic mechanisms that keep taxa distinct in their clades. I will address the question whether modes of reproduction such as asexual and sexual reproduction are natural classes, given that they are paraphyletic in most clades.
Resumo:
This article reports a study on the preparation, densification process, and structural and optical properties of SiO(2)-Ta(2)O(5) nanocomposite films obtained by the sol-gel process. The films were doped with Er(3+) and the Si:Ta molar ratio was 90:10. Values of refractive index, thickness and vibrational modes in terms of the number of layers and thermal annealing time are described for the films. The densification process is accompanied by OH group elimination, increase in the refractive index, and changes in film thickness. Full densification of the film is acquired after 90 min of annealing at 900 degrees C. The onset of crystallization and devitrification, with the growth of Ta(2)O(5) nanocrystals occurs with film densification, evidenced by high-resolution transmission electron microscopy. The Er(3+)-doped nanocomposite annealed at 900 degrees C consists of Ta(2)O(5) nanoparticles, with sizes around 2 nm, dispersed in the SiO(2) amorphous phase. The main emission peak of the film is detected at around 1532 nm, which can be assigned to the (4)I(13/2)->(4)I(15/2) transition of the Er(3+) ions present in the nanocomposites. This band has a full width at half medium of 64 nm, and the lifetime measured for the (4)I(13/2) levels is 5.4 ms, which is broader compared to those of other silicate systems. In conclusion, the films obtained in this work are excellent candidates for use as active planar waveguide. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The goal of this paper is to study the global existence of small data solutions to the Cauchy problem for the nonlinear wave equation u(tt) - a(t)(2) Delta u = u(t)(2) - a(t)(2)vertical bar del u vertical bar(2). In particular we are interested in statements for the 1D case. We will explain how the interplay between the increasing and oscillating behavior of the coefficient will influence global existence of small data solutions. Copyright c 2011 John Wiley & Sons, Ltd.
Resumo:
Background: Current relevance of T-wave alternans is based on its association with electrical disorder and elevated cardiac risk. Quantitative reports would improve understanding on TWA augmentation mechanisms during mental stress or prior to tachyarrhythmias. However, little information is available about quantitative TWA values in clinical populations. This study aims to create and compare TWA profiles of healthy subjects and ICD patients, evaluated on treadmill stress protocols. Methods: Apparently healthy subjects, not in use of any medication were recruited. All eligible ICD patients were capable of performing an attenuated stress test. TWA analysis was performed during a 15-lead treadmill test. The derived comparative profile consisted of TWA amplitude and its associated heart rate, at rest (baseline) and at peak TWA value. Chi-square or Mann-Whitney tests were used with p values <= 0.05. Discriminatory performance was evaluated by a binary logistic regression model. Results: 31 healthy subjects (8F, 23M) and 32 ICD patients (10F, 22M) were different on baseline TWA (1 +/- 2 mu V; 8 +/- 9 mu V; p < 0.001) and peak TWA values (26 +/- 13 mu V; 37 +/- 20 mu V; p = 0,009) as well as on baseline TWA heart rate (79 +/- 10 bpm; 67 +/- 15 bpm; p < 0.001) and peak TWA heart rate (118 +/- 8 bpm; 90 +/- 17 bpm; p < 0.001). The logistic model yielded sensitivity and specificity values of 88.9% and 92.9%, respectively. Conclusions: Healthy subjects and ICD patients have distinct TWA profiles. The new TWA profile representation (in amplitude-heart rate pairs) may help comparison among different research protocols. Ann Noninvasive Electrocardiol 2009;14(2):108-118.
Resumo:
We consider the case of two cavity modes of the electromagnetic field, which are coupled via the action of a parametric amplifier. The fields are allowed to leak from the cavity and homodyne measurement is performed on one of the modes. Because of the correlations between the modes, this leads to a reduction of the variance in a quadrature of the other mode, although no measurement is performed on it directly. We discuss how this relates to the Einstein-Podolky-Rosen Gedankenexperiment.