991 resultados para water age
Resumo:
Recent discoveries relating to the circulation of fluids within the oceanic crust include the finding of both important fluxes of elements and isotopes into the oceans by ridge-crest hydrothermal convection and important fluxes of heat out of the oceanic crust by convection at ridge crests and at some distance from ridge crests. In the present chapter, I present isotopic, chemical, and physical data from sediments and pore waters of Deep Sea Drilling Project (DSDP) Holes 503A and 503B. These results are modeled in terms of pore-water diffusion, advection, and production to ascertain the relative contribution of these processes at this location, 7.5 m.y. removed from ridge-crest hydrothermal activity. The observations made here contribute to the understanding of chemical and heat transport in oceanic crust of moderate age.
Resumo:
Atmospheric carbon dioxide concentrations were significantly lower during glacial periods than during intervening interglacial periods, but the mechanisms responsible for this difference remain uncertain. Many recent explanations call on greater carbon storage in a poorly ventilated deep ocean during glacial periods (Trancois et al., 1997, doi:10.1038/40073; Toggweiler, 1999, doi:10.1029/1999PA900033; Stephens and Keeling, 2000, doi:10.1038/35004556; Marchitto et al., 2007, doi:10.1126/science.1138679; Sigman and Boyle, 2000, doi:10.1038/35038000), but direct evidence regarding the ventilation and respired carbon content of the glacial deep ocean is sparse and often equivocal (Broecker et al., 2004, doi:10.1126/science.1102293). Here we present sedimentary geochemical records from sites spanning the deep subarctic Pacific that -together with previously published results (Keigwin, 1998, doi:10.1029/98PA00874)- show that a poorly ventilated water mass containing a high concentration of respired carbon dioxide occupied the North Pacific abyss during the Last Glacial Maximum. Despite an inferred increase in deep Southern Ocean ventilation during the first step of the deglaciation (18,000-15,000 years ago) (Marchitto et al., 2007, doi:10.1126/science.1138679; Monnin et al., 2001, doi:10.1126/science.291.5501.112), we find no evidence for improved ventilation in the abyssal subarctic Pacific until a rapid transition ~14,600 years ago: this change was accompanied by an acceleration of export production from the surface waters above but only a small increase in atmospheric carbon dioxide concentration (Monnin et al., 2001, doi:10.1126/science.291.5501.112). We speculate that these changes were mechanistically linked to a roughly coeval increase in deep water formation in the North Atlantic (Robinson et al., 2005, doi:10.1126/science.1114832; Skinner nd Shackleton, 2004, doi:10.1029/2003PA000983; McManus et al., 2004, doi:10.1038/nature02494), which flushed respired carbon dioxide from northern abyssal waters, but also increased the supply of nutrients to the upper ocean, leading to greater carbon dioxide sequestration at mid-depths and stalling the rise of atmospheric carbon dioxide concentrations. Our findings are qualitatively consistent with hypotheses invoking a deglacial flushing of respired carbon dioxide from an isolated, deep ocean reservoir periods (Trancois et al., 1997, doi:10.1038/40073; Toggweiler, 1999, doi:10.1029/1999PA900033; Stephens and Keeling, 2000, doi:10.1038/35004556; Marchitto et al., 2007, doi:10.1126/science.1138679; Sigman and Boyle, 2000, doi:10.1038/35038000; Boyle, 1988, doi:10.1038/331055a0), but suggest that the reservoir may have been released in stages, as vigorous deep water ventilation switched between North Atlantic and Southern Ocean source regions.
Resumo:
Radiocarbon age differences for pairs of coexisting late glacial age benthic and planktic foraminifera shells handpicked from 10 sediment samples from a core from a depth of 2.8 km in the western equatorial Pacific are not significantly different from that of 1600 years calculated from measurements on prenuclear seawater. This places a lower limit on the depth of the interface for the hypothetical radiocarbon-depleted glacial age seawater reservoir required to explain the 190 per mil drop in the 14C/C for atmospheric CO2, which occurred during the mystery interval (17.5 to 14.5 calendar years ago). These measurements restrict the volume of this reservoir to be no more than 35% that of the ocean. Further, 14C measurements on a single Last Glacial Maximum age sample from a central equatorial Pacific core from a depth of 4.4 km water fail to reveal evidence for the required 5- to 7-kyr age difference between benthic and planktic foraminifera shells if the isolated reservoir occupied only one third of the ocean. Nor does the 13C record for benthic forams from this abyssal core yield any evidence for the excess respiration CO2 expected to be produced during thousands of years of isolation. Nor, as indicated by the presence of benthic foraminifera, was the dissolved oxygen used up in this abyssal water.
Resumo:
We have reconstructed the surface water environment of the Arctic Ocean over the last ? 50,000 years using measurements of the organic nitrogen and carbon isotope ratios, carbonate and total organic carbon concentrations (TOC), and terrestrial biomarkers (lignin and long-chain n-alkanes) in four multicores. Variations in nitrogen isotope ratios that are concordant with TOC and carbonate concentrations (representing foraminifera and excluding ice-rafted-debris) reflect differences in relative nutrient utilization of phytoplankton in the surface waters. However, d15N variations also appear to be dependent on the stratification of the water column and therefore potentially track the exchange of nutrients between deep and surface waters. Low Last Glacial Maximum (LGM) d15N values and higher Holocene values are opposite to those recorded in the Southern Ocean. The Arctic Ocean with higher nutrient utilization today compared to the LGM therefore acts as a counterpart to the Southern Ocean, although the global impact on carbon dioxide variations compared to the Southern Ocean is probably low.
Resumo:
Eight DSDP/ODP cores were analyzed for major ion concentrations and d37Cl values of water-soluble chloride (d37Clwsc) and structurally bound chloride (d37Clsbc) in serpentinized ultramafic rocks. This diverse set of cores spans a wide range in age, temperature of serpentinization, tectonic setting, and geographic location of drilled serpentinized oceanic crust. Three of the cores were sampled at closely spaced intervals to investigate downhole variation in Cl concentration and chlorine isotope composition. The average total Cl content of all 86 samples is 0.26±0.16 wt.% (0.19±0.10 wt.% as water-soluble Cl (Xwsc) and 0.09±0.09 wt.% as structurally bound Cl (Xsbc)). Structurally bound Cl concentration nearly doubles with depth in all cores; there is no consistent trend in water-soluble Cl content among the cores. Chlorine isotope fractionation between the structurally bound Cl**- site and the water-soluble Cl**- site varies from -1.08? to +1.16?, averaging to +0.21?. Samples with negative fractionations may be related to reequilibration of the water-soluble chloride with seawater post-serpentinite formation. Six of the cores have positive bulk d37Cl values (+0.05? to +0.36?); the other two cores (173-1068A (Leg-Hole) and 84-570) have negative bulk d37Cl values (-1.26? and -0.54?). The cores with negative d37Cl values also have variable Cl**-/SO4**2- ratios, in contrast to all other cores. The isotopically positive cores (153-920D and 147-895E) show no isotopic variation with depth; the isotopically negative core (173-1068A) decreases by ~1? with depth for both the water-soluble and structurally bound Cl fractions. Non-zero bulk d37Cl values indicate Cl in serpentinites was incorporated during original hydration and is not an artifact of seawater infiltration during drilling. Cores with positive d37Cl values are most likely explained by open system fractionation during hydrothermal alteration, with preferential incorporation of 37Cl from seawater into the serpentinite and loss of residual light Cl back to the ocean. Fluid / rock ratios were probably low as evidenced by the presence of water-soluble salts. The two isotopically negative cores are characterized by a thick overlying sedimentary package that was in place prior to serpentinization. We believe the low d37Cl values of these cores are a result of hydration of ultramafic rock by infiltrating aqueous pore fluids from the overlying sediments. The resulting serpentinites inherit the characteristic negative d37Cl values of the pore waters. Chlorine stable isotopes can be used to identify the source of the serpentinizing fluid and ultimately discern chemical and tectonic processes involved in serpentinization.
Resumo:
We determined d18OCib values of live (Rose Bengal stained) and dead epibenthic foraminifera Cibicidoides wuellerstorfi, Cibicides lobatulus, and Cibicides refulgens in surface sediment samples from the Arctic Ocean and the Greenland, Iceland, and Norwegian seas (Nordic Sea). This is the first time that a comprehensive d18OCib data set is generated and compiled from the Arctic Ocean. For comparison, we defined Atlantic Water (AW), upper Arctic Bottom Water (uABW), and Arctic Bottom Water (ABW) by their temperature/salinity characteristics and calculated mean equilibrium calcite d18Oequ from summer sea-water d18Ow and in situ temperatures. As a result, in the Arctic environment we compensate for Cibicidoides- and Cibicides-specific offsets from equilibrium calcite of -0.35 and -0.55 per mil, respectively. After this taxon-specific adjustment, mean d18OCib values plausibly reflect the density stratification of principle water masses in the Nordic Sea and Arctic Ocean. In addition, mean d18OCib from AW not only significantly differs from mean d18OCib from ABW, but also d18OCib from within AW differentiates in function of provenience and water mass age. Furthermore, in shallow waters brine-derived low d18Ow can significantly lower the d18OCib of Cibicides spp. and thus d18OCib may serve as a paleobrine indicator. There is no statistically significant difference, however, between deeper water masses mean d18OCib of the Nordic Sea, and of the Eurasian and Amerasian basins, and no influence of low-d18Ow brines is recorded in Recent uABW and ABW d18OCib of C. wuellerstorfi. This may be due to dilution of a low-d18Ow brine signal in the deep sea, and/or to preferential incorporation of relatively high-d18Ow brines from high-salinity shelves. Although our data encompass environments with seasonal sea-ice and brine formation supposed to ultimately ventilate the deep Arctic Ocean, d18OCib from uABW and ABW do not indicate negative excursions. This may challenge hypotheses that call for enhanced Arctic brine release to explain negative benthic d18O spikes in deep-sea sediments from the late Pleistocene North Atlantic Ocean.
Resumo:
A 120 m-long ice core was drilled in 2012 on the Derwael Ice Rise, coastal Dronning Maud Land, East Antarctica. Water stable isotopes (d18O and dD) stratigraphy is supplemented by discontinuous major ion profiles and continuous electrical conductivity measurements. The base of the ice core is dated to AD 1759 ± 16, providing a climate proxy for the past ~250 years. This data set presents the core's annual layer thickness history in meters water equivalent for the oldest age-depth estimate before correction for the influence of ice deformation.