875 resultados para viable system model
Resumo:
Long running multi-physics coupled parallel applications have gained prominence in recent years. The high computational requirements and long durations of simulations of these applications necessitate the use of multiple systems of a Grid for execution. In this paper, we have built an adaptive middleware framework for execution of long running multi-physics coupled applications across multiple batch systems of a Grid. Our framework, apart from coordinating the executions of the component jobs of an application on different batch systems, also automatically resubmits the jobs multiple times to the batch queues to continue and sustain long running executions. As the set of active batch systems available for execution changes, our framework performs migration and rescheduling of components using a robust rescheduling decision algorithm. We have used our framework for improving the application throughput of a foremost long running multi-component application for climate modeling, the Community Climate System Model (CCSM). Our real multi-site experiments with CCSM indicate that Grid executions can lead to improved application throughput for climate models.
Resumo:
The simulation characteristics of the Asian-Australian monsoon are documented for the Community Climate System Model, version 4 (CCSM4). This is the first part of a two part series examining monsoon regimes in the global tropics in the CCSM4. Comparisons are made to an Atmospheric Model Intercomparison Project (AMIP) simulation of the atmospheric component in CCSM4 Community Atmosphere Model, version 4, (CAM4)] to deduce differences in the monsoon simulations run with observed sea surface temperatures (SSTs) and with ocean-atmosphere coupling. These simulations are also compared to a previous version of the model (CCSM3) to evaluate progress. In general, monsoon rainfall is too heavy in the uncoupled AMIP run with CAM4, and monsoon rainfall amounts are generally better simulated with ocean coupling in CCSM4. Most aspects of the Asian-Australian monsoon simulations are improved in CCSM4 compared to CCSM3. There is a reduction of the systematic error of rainfall over the tropical Indian Ocean for the South Asian monsoon, and well-simulated connections between SSTs in the Bay of Bengal and regional South Asian monsoon precipitation. The pattern of rainfall in the Australian monsoon is closer to observations in part because of contributions from the improvements of the Indonesian Throughflow and diapycnal diffusion in CCSM4. Intraseasonal variability of the Asian-Australian monsoon is much improved in CCSM4 compared to CCSM3 both in terms of eastward and northward propagation characteristics, though it is still somewhat weaker than observed. An improved simulation of El Nino in CCSM4 contributes to more realistic connections between the Asian-Australian monsoon and El Nino-Southern Oscillation (ENSO), though there is considerable decadal and century time scale variability of the strength of the monsoon-ENSO connection.
Resumo:
Computational grids with multiple batch systems (batch grids) can be powerful infrastructures for executing long-running multi-component parallel applications. In this paper, we evaluate the potential improvements in throughput of long-running multi-component applications when the different components of the applications are executed on multiple batch systems of batch grids. We compare the multiple batch executions with executions of the components on a single batch system without increasing the number of processors used for executions. We perform our analysis with a foremost long-running multi-component application for climate modeling, the Community Climate System Model (CCSM). We have built a robust simulator that models the characteristics of both the multi-component application and the batch systems. By conducting large number of simulations with different workload characteristics and queuing policies of the systems, processor allocations to components of the application, distributions of the components to the batch systems and inter-cluster bandwidths, we show that multiple batch executions lead to 55% average increase in throughput over single batch executions for long-running CCSM. We also conducted real experiments with a practical middleware infrastructure and showed that multi-site executions lead to effective utilization of batch systems for executions of CCSM and give higher simulation throughput than single-site executions. Copyright (c) 2011 John Wiley & Sons, Ltd.
Resumo:
We propose a simulation-based algorithm for computing the optimal pricing policy for a product under uncertain demand dynamics. We consider a parameterized stochastic differential equation (SDE) model for the uncertain demand dynamics of the product over the planning horizon. In particular, we consider a dynamic model that is an extension of the Bass model. The performance of our algorithm is compared to that of a myopic pricing policy and is shown to give better results. Two significant advantages with our algorithm are as follows: (a) it does not require information on the system model parameters if the SDE system state is known via either a simulation device or real data, and (b) as it works efficiently even for high-dimensional parameters, it uses the efficient smoothed functional gradient estimator.
Resumo:
SARAS is a correlation spectrometer connected to a frequency independent antenna that is purpose-designed for precision measurements of the radio background at long wavelengths. The design, calibration, and observing strategies admit solutions for the internal additive contributions to the radiometer response, and hence a separation of these contaminants from the antenna temperature. We present here a wideband measurement of the radio sky spectrum by SARAS that provides an accurate measurement of the absolute brightness and spectral index between 110 and 175MHz. Accuracy in the measurement of absolute sky brightness is limited by systematic errors of magnitude 1.2%; errors in calibration and in the joint estimation of sky and system model parameters are relatively smaller. We use this wide-angle measurement of the sky brightness using the precision wide-band dipole antenna to provide an improved absolute calibration for the 150 MHz all-sky map of Landecker and Wielebinski: subtracting an offset of 21.4 K and scaling by a factor of 1.05 will reduce the overall offset error to 8 K (from 50 K) and scale error to 0.8% (from 5%). The SARAS measurement of the temperature spectral index is in the range -2.3 to -2.45 in the 110-175MHz band and indicates that the region toward the Galactic bulge has a relatively flatter index.
Resumo:
Rivers of the world discharge about 36000 km 3 of freshwater into the ocean every year. To investigate the impact of river discharge on climate, we have carried out two 100 year simulations using the Community Climate System Model (CCSM3), one including the river runoff into the ocean and the other excluding it. When the river discharge is shut off, global average sea surface temperature (SST) rises by about 0.5 degrees C and the Indian Summer Monsoon Rainfall (ISMR) increases by about 10% of the seasonal total with large increase in the eastern Bay of Bengal and along the west coast of India. In addition, the frequency of occurrence of La Nina-like cooling events in the equatorial Pacific increases and the correlation between ISMR and Pacific SST anomalies become stronger. The teleconnection between the SST anomalies in the Pacific and monsoon is effected via upper tropospheric meridional temperature gradient and the North African-Asian Jet axis.
Resumo:
Distributed system has quite a lot of servers to attain increased availability of service and for fault tolerance. Balancing the load among these servers is an important task to achieve better performance. There are various hardware and software based load balancing solutions available. However there is always an overhead on Servers and the Load Balancer while communicating with each other and sharing their availability and the current load status information. Load balancer is always busy in listening to clients' request and redirecting them. It also needs to collect the servers' availability status frequently, to keep itself up-to-date. Servers are busy in not only providing service to clients but also sharing their current load information with load balancing algorithms. In this paper we have proposed and discussed the concept and system model for software based load balancer along with Availability-Checker and Load Reporters (LB-ACLRs) which reduces the overhead on server and the load balancer. We have also described the architectural components with their roles and responsibilities. We have presented a detailed analysis to show how our proposed Availability Checker significantly increases the performance of the system.
Resumo:
ICINCO 2010
Resumo:
This thesis is motivated by safety-critical applications involving autonomous air, ground, and space vehicles carrying out complex tasks in uncertain and adversarial environments. We use temporal logic as a language to formally specify complex tasks and system properties. Temporal logic specifications generalize the classical notions of stability and reachability that are studied in the control and hybrid systems communities. Given a system model and a formal task specification, the goal is to automatically synthesize a control policy for the system that ensures that the system satisfies the specification. This thesis presents novel control policy synthesis algorithms for optimal and robust control of dynamical systems with temporal logic specifications. Furthermore, it introduces algorithms that are efficient and extend to high-dimensional dynamical systems.
The first contribution of this thesis is the generalization of a classical linear temporal logic (LTL) control synthesis approach to optimal and robust control. We show how we can extend automata-based synthesis techniques for discrete abstractions of dynamical systems to create optimal and robust controllers that are guaranteed to satisfy an LTL specification. Such optimal and robust controllers can be computed at little extra computational cost compared to computing a feasible controller.
The second contribution of this thesis addresses the scalability of control synthesis with LTL specifications. A major limitation of the standard automaton-based approach for control with LTL specifications is that the automaton might be doubly-exponential in the size of the LTL specification. We introduce a fragment of LTL for which one can compute feasible control policies in time polynomial in the size of the system and specification. Additionally, we show how to compute optimal control policies for a variety of cost functions, and identify interesting cases when this can be done in polynomial time. These techniques are particularly relevant for online control, as one can guarantee that a feasible solution can be found quickly, and then iteratively improve on the quality as time permits.
The final contribution of this thesis is a set of algorithms for computing feasible trajectories for high-dimensional, nonlinear systems with LTL specifications. These algorithms avoid a potentially computationally-expensive process of computing a discrete abstraction, and instead compute directly on the system's continuous state space. The first method uses an automaton representing the specification to directly encode a series of constrained-reachability subproblems, which can be solved in a modular fashion by using standard techniques. The second method encodes an LTL formula as mixed-integer linear programming constraints on the dynamical system. We demonstrate these approaches with numerical experiments on temporal logic motion planning problems with high-dimensional (10+ states) continuous systems.
Resumo:
Dependence of performances of non-line-of-sight (NLOS) solar-blind ultraviolet (UV) communication systems on atmosphere visibility is investigated numerically by correlating the propagation of UV radiation with the visibility. A simplified solar-blind UV atmospheric propagation model is introduced, and the NLOS UV communication system model is constituted based on the single scattering assumption. Using the model, numerical simulation is conducted for two typical geometry configurations and different modulation formats. The results indicate that the performance of the NLOS UV communication system is insensitive to variation of visibility in quite a large range, and deteriorates significantly only in very low-visibility weather, and is also dependent on the geometry configuration of the system. The results also show that the pulse position modulation (PPM) is preferable due to its high-power efficiency to improve the system performance. (c) 2007 Elsevier GmbH. All rights reserved.
Resumo:
139 p.
Resumo:
Based on a comprehensive theoretical optical orthogonal frequency division multiplexing (OOFDM) system model rigorously verified by comparing numerical results with end-to-end real-time experimental measurements at 11.25Gb/s, detailed explorations are undertaken, for the first time, of the impacts of various physical factors on the OOFDM system performance over directly modulated DFB laser (DML)-based, intensity modulation and direct detection (IMDD), single-mode fibre (SMF) systems without in-line optical amplification and chromatic dispersion compensation. It is shown that the low extinction ratio (ER) of the DML modulated OOFDM signal is the predominant factor limiting the maximum achievable optical power budget, and the subcarrier intermixing effect associated with square-law photon detection in the receiver reduces the optical power budget by at least 1dB. Results also indicate that, immediately after the DML in the transmitter, the insertion of a 0.02nm bandwidth optical Gaussian bandpass filter with a 0.01nm wavelength offset with respect to the optical carrier wavelength can enhance the OOFDM signal ER by approximately 1.24dB, thus resulting in a 7dB optical power budget improvement at a total channel BER of 1 × 10(-3).
Resumo:
This paper studies the converter rating requirement of a Brushless Doubly-Fed Induction Generator for wind turbine applications by considering practical constraints such as generator torque-speed requirement, reactive power management and grid low-voltage ride-through (LVRT). Practical data have been used to obtain a realistic system model of a Brushless DFIG wind turbine using steady-state and dynamic models. A converter rating optimization is performed based on the given constraints. The converter current and voltage requirements are examined and the resulting inverter rating is compared to optimization algorithm results. In addition, the effects of rotor leakage inductance on LVRT performance and hence converter rating is investigated.
Resumo:
Various concepts have been proposed or used in the development of rheological models for debris flow. The earliest model developed by Bagnold was based on the concept of the “dispersive” pressure generated by grain collisions. Bagnold’s concept appears to be theoretically sound, but his empirical model has been found to be inconsistent with most theoretical models developed from non-Newtonian fluid mechanics. Although the generality of Bagnold’s model is still at issue, debris-flow modelers in Japan have generally accepted Takahashi’s formulas derived from Bagnold’s model. Some efforts have recently been made by theoreticians in non-Newtonian fluid mechanics to modify or improve Bagnold’s concept or model. A viable rheological model should consist both of a rate-independent part and a rate-dependent part. A generalized viscoplastic fluid (GVF) model that has both parts as well as two major rheological properties (i.e., the normal stress effect and soil yield criterion) is shown to be sufficiently accurate, yet practical, for general use in debris-flow modeling. In fact, Bagnold’s model is found to be only a particular case of the GVF model. Analytical solutions for (steady) uniform debris flows in wide channels are obtained from the GVF model based on Bagnold’s simplified assumption of constant grain concentration.
Resumo:
Within the dinuclear system model, the effects of the relative orientations of interacting deformed nuclei on the interaction potential energy surfaces, the evaporation residue cross sections of some cold fusion reactions leading to superheavy elements are investigated. The competition between fusion and quasifission is studied to show the effect of the orientation. It turns out that the belly-belly orientation is in favor of the production of superheavy nuclei, because in the case a barrier has suppressed the quasifission and thus helped fusion.