900 resultados para vegetal cover
Resumo:
Decision tree classification algorithms have significant potential for land cover mapping problems and have not been tested in detail by the remote sensing community relative to more conventional pattern recognition techniques such as maximum likelihood classification. In this paper, we present several types of decision tree classification algorithms arid evaluate them on three different remote sensing data sets. The decision tree classification algorithms tested include an univariate decision tree, a multivariate decision tree, and a hybrid decision tree capable of including several different types of classification algorithms within a single decision tree structure. Classification accuracies produced by each of these decision tree algorithms are compared with both maximum likelihood and linear discriminant function classifiers. Results from this analysis show that the decision tree algorithms consistently outperform the maximum likelihood and linear discriminant function classifiers in regard to classf — cation accuracy. In particular, the hybrid tree consistently produced the highest classification accuracies for the data sets tested. More generally, the results from this work show that decision trees have several advantages for remote sensing applications by virtue of their relatively simple, explicit, and intuitive classification structure. Further, decision tree algorithms are strictly nonparametric and, therefore, make no assumptions regarding the distribution of input data, and are flexible and robust with respect to nonlinear and noisy relations among input features and class labels.
Resumo:
Over last two decades, numerous studies have used remotely sensed data from the Advanced Very High Resolution Radiometer (AVHRR) sensors to map land use and land cover at large spatial scales, but achieved only limited success. In this paper, we employed an approach that combines both AVHRR images and geophysical datasets (e.g. climate, elevation). Three geophysical datasets are used in this study: annual mean temperature, annual precipitation, and elevation. We first divide China into nine bio-climatic regions, using the long-term mean climate data. For each of nine regions, the three geophysical data layers are stacked together with AVHRR data and AVHRR-derived vegetation index (Normalized Difference Vegetation Index) data, and the resultant multi-source datasets were then analysed to generate land-cover maps for individual regions, using supervised classification algorithms. The nine land-cover maps for individual regions were assembled together for China. The existing land-cover dataset derived from Landsat Thematic Mapper (TM) images was used to assess the accuracy of the classification that is based on AVHRR and geophysical data. Accuracy of individual regions varies from 73% to 89%, with an overall accuracy of 81% for China. The results showed that the methodology used in this study is, in general, feasible for large-scale land-cover mapping in China.
Resumo:
The interactions among industrial development, land use/cover change (LUCC), and environmental effects in Changshu in the eastern coastal China were analyzed using high-resolution Landsat TM data in 1990, 1995, 2000, and 2006, socio-economic data and water environmental quality monitoring data from research institutes and governmental departments. Three phases of industrial development in Changshu were examined (i.e., the three periods of 1990 to 1995, 1995 to 2000, and 2000 to 2006). Besides industrial development and rapid urbanization, land use/cover in Changshu had changed drastically from 1990 to 2006. This change was characterized by major replacements of farmland by urban and rural settlements, artificial ponds, forested and constructed land. Industrialization, urbanization, agricultural structure adjustment, and rural housing construction were the major socio-economic driving forces of LUCC in Changshu. In addition, the annual value of ecosystem services in Changshu decreased slightly during 1990-2000, but increased significantly during 2000-2006. Nevertheless, the local environmental quality in Changshu, especially in rural areas, has not yet been improved significantly. Thus, this paper suggests an increased attention to fully realize the role of land supply in adjustment of environment-friendly industrial structure and urban-rural spatial restructuring, and translating the land management and environmental protection policies into an optimized industrial distribution and land-use pattern.
Resumo:
Vegetation cover plays an important role in the process of evaporation and infiltration. To explore the relationships between precipitation, soil water and groundwater in Taihang mountainous region, China, precipitation, soil water and water table were observed from 2004 to 2006, and precipitation, soil water and groundwater were sampled in 2004 and 2005 for oxygen-18 and deuterium analysis at Chongling catchment. The soil water was sampled at three sites covered by grass (Carex humilis and Carex lanceolata), acacia and arborvitae respectively. Precipitation is mainly concentrated in rainy seasons and has no significant spatial variance in study area. The stable isotopic compositions are enriched in precipitation and soil water due to the evaporation. The analysis of soil water potential and isotopic profiles shows that evaporation of soil water under arborvitae cover is weaker than under grass and acacia, while soil water evaporation under grass and acacia showed no significant difference. Both delta O-18 profiles and soil water potential dynamics reveal that the soil under acacia allows the most rapid infiltration rate, which may be related to preferential flow. In the process of infiltration after a rainstorm, antecedent water still takes up over 30% of water in the topsoil. The soil water between depths of 0-115 cm under grass has a residence time of about 20 days in the rainy season. Groundwater recharge from precipitation mainly occurs in the rainy season, especially when rainstorms or successive heavy rain events happen.
Resumo:
We obtained four phases of land cover spatial data sets by interpreting MSS images of middle and late 1970s and three phases of TM images of late 1980s, 2004 and 2008 based on field investigation in Three Rivers' Source Region. We analyzed the temporal and spatial characteristics of land cover and macro ecological changes in Three Rivers' Source Region in Qinghai-Tibet plateau since middle and late 1970s. Indicated by land cover condition index change rate and land cover change index, land cover and macroscopical ecological condition degenerated (7090 period Zc -0.63, LCCI -0.58)-obviously degenerated (9004 period, Zc -0.94, LCCI -1.76)-slightly meliorated (0408 period, Zc 0.06, LCCI 0.33). This course was jointly driven by climate change, grassland stocking pressure and implement of ecological construction project.
Resumo:
The VEGETATION (VGT) sensor in SPOT 4 has four spectral bands that are equivalent to Landsat Thematic Mapper (TM) bands (blue, red, near-infrared and mid-infrared spectral bands) and provides daily images of the global land surface at a 1-km spatial resolution. We propose a new index for identifying and mapping of snow ice cover, namely the Normalized Difference Snow/Ice Index (NDSII), which uses reflectance values of red and mid-infrared spectral bands of Landsat TM and VGT. For Landsat TM data, NDSII is calculated as NDSIITM =(TM3 -TM5)/(TM3 +TM5); for VGT data, NDSII is calculated as NDSIIVGT =(B2- MIR)/(B2 + MIR). As a case study we used a Landsat TM image that covers the eastern part of the Qilian mountain range in the Qinghai-Xizang (Tibetan) plateau of China. NDSIITM gave similar estimates of the area and spatial distribution of snow/ice cover to the Normalized Difference Snow Index (NDSI=(TM2-TM5)/(TM2+TM5)) which has been proposed by Hall et al. The results indicated that the VGT sensor might have the potential for operational monitoring and mapping of snow/ice cover from regional to global scales, when using NDSIIVGT.
Resumo:
A Proteômica surgiu como uma das vertentes da era pós-genômica e vem contribuindo significativamente para o entendimento global e integrado do sistema biológico. O estudo do proteoma envolve todo o conjunto de proteínas expresso pelo genoma de uma célula, como também pode ser direcionado somente àquelas que se expressam diferencialmente em condições específicas. Proteômica dedica-se também ao conjunto de isoformas de proteínas e modificações pós-traducionais, às interações entre elas, bem como à descrição estrutural de moléculas e seus complexos. Esta revisão apresenta as principais tecnologias empregadas em estudos proteômicos, e faz um levantamento de trabalhos recentes que utilizaram abordagens proteômicas para a identificação de genes e rotas envolvidos na resposta da planta a estresses bióticos e abióticos. Finalmente, são discutidos aspectos do potencial do emprego da proteômica na compreensão de questões biológicas complexas e no melhoramento genético de plantas na busca de genótipos superiores.
Resumo:
Capítulo 1. Paclobutrazol - Regulador de Crescimento Vegetal. Capítulo 2. Xenobióticos e seus Impactos Ambientais. Capítulo 3. Efeito de Paclobutrazol na Microbiota do Filoplano de Mangueiras. Capítulo 4. Efeito do Paclobutrazol sobre a Microbiota do Solo. Capítulo 5. Degradação do Paclobutrazol em Solos Tropicais. Capítulo 6. Análise do Polimorfismo de Bactérias Degradadoras do Paclobutrazol. Capítulo 7. Avaliação de Risco em decorrência da Exposição Perinatal ao Paclobutrazol: análise de alguns indicadores físicos e neurocomportamentais. Capítulo 8. Toxicidade do Paclobutrazol em Ambiente Aquático.
Resumo:
2008
Resumo:
O melhoramento genético de plantas tem contribuído sobremaneira para o aumento da produção em diversas espécies de grande importância econômica e/ou social, beneficiando bilhões de pessoas, especialmente de menor poder aquisitivo, que vivem em países em desenvolvimento distribuídos por todo o mundo. Esses aumentos na produção resultam da obtenção de novos genótipos, que apresentam rendimentos mais elevados, adaptados a diversas condições ecológicas, muitas das vezes adversas, e resistentes a pragas e doenças. No entanto, para a geração desses materiais melhorados, torna-se necessário que características de interesse sejam incorporadas às novas cultivares, dentro de programas de melhoramento genético bem definidos, de forma que possam ser, ao final de todo o processo, exploradas comercialmente.
Resumo:
1997
Resumo:
2010
Resumo:
O conhecimento do uso atual e cobertura do solo é imprescindível em qualquer projeto de caracterização e monitoramento ambientais, permitindo demarcar os diferentes usos da terra e vegetação, bem como subsidiar o planejamento e gestão ambientais. O presente trabalho abrange a totalidade do Estado do Rio de Janeiro, compreendido entre os meridianos 410 e 450 de longitude Oeste e os paralelos 200 30? e 230 30? de latitude Sul, estendendo-se por aproximadamente 44.000 km2. Tem como objetivo inventariar e mapear o estado atual da ocupação dos solos, distinguindo e quantificando os principais tipos de uso do solo e de cobertura vegetal, apresentados numa escala generalizada de 1:250.000. Para tal, fez-se um mapeamento preliminar com base nos padrões espectrais das imagens de satélite Landsat ETM7+, cedidas pela EMATER-RJ, utilizando-se de diferentes algoritmos de classificação espectral. Durante a elaboração da versão final do Mapa de Uso Atual e Cobertura Vegetal dos Solos do Estado do Rio de Janeiro, foram viagens de verificação in situ a fim de esclarecer dúvidas e subsidiar ajustes e modificações posteriores. O trabalho de pré-processamento, interpretação e classificação das imagens para a produção e edição final do Mapa de Uso Atual e Cobertura Vegetal realizou-se no período de março de 2002 a fevereiro de 2003, pelas equipes técnicas da CPRM (Serviço Geológico Brasileiro), Divisão de Geoprocessamento - DIGEOP, Departamento de Informações Institucionais (DEINF) e o Laboratório de Geoinformação da Embrapa Solos. Foram identificadas e mapeadas 13 grandes classes de uso e ocupação do solo, algumas delas subdivididas em tipos, assim classificadas e distribuídas: 1 ? Mata Atlântica (Remanescente/Secundária e Ciliar); 2 ? Mangue (Mangue e Mangue Degradado); 3 ? Restinga; 4 - Pecuária (Pastagem Plantada e Campo / Passtagem em Zona Úmida); 5 ? Agricultura; 6 ? Reflorestamento; 7 ? Afloramento de Rocha; 8 ? Solo Exposto; 9 ? Corpo d?Água; 10 ? Salina; 11 ? Extração de Areia / Mineração; 12 ? Praia e Duna; 13 ? Área Urbana.
Resumo:
Metodologia para as análises em laboratório; Produção de sideróforos; Produção de ácido indol acético (AIA); Produção de citocininas e giberelinas; Fixação assimbiotica de N2; Produção de quitinase; Producao de B-1,3-glucanase; Produção de 1-aminociclopropano-1-carboxylato deaminase; Produção de ácido cianidrico; Solubilizacao de fosfatos; Produção de pectinase; Produção de celulase; Antagonismo direto a fungos; Antagonismo indireto a fungos (compostos volateis); Antagonismo entre bacterias.