969 resultados para variable-speed drive


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A current error space phasor based simple hysteresis controller is proposed in this paper to control the switching frequency variation in two-level pulsewidth-modulation (PWM) inverter-fed induction motor (IM) drives. A parabolic boundary for the current error space phasor is suggested for the first time to obtain the switching frequency spectrum for output voltage with hysteresis controller similar to the constant switching frequency voltage-controlled space vector PWM-based IM drive. A novel concept of online variation of this parabolic boundary, which depends on the operating speed of motor, is presented. A generalized technique that determines the set of unique parabolic boundaries for a two-level inverter feeding any given induction motor is described. The sector change logic is self-adaptive and is capable of taking the drive up to the six-step mode if needed. Steady-state and transient performance of proposed controller is experimentally verified on a 3.7-kW IM drive in the entire speed range. Close resemblance of the simulation and experimental results is shown.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Voltage source inverter (VSI)-fed six-phase induction motor (IM) drives have high 6n +/- 1, n = odd-order harmonic currents. This is because these currents, driven by the corresponding harmonic voltages in the inverter output, are limited only by the stator leakage impedance, as these harmonics are absent in the back electromotive force of the motor. To suppress the harmonic currents, either bulky inductive harmonic filters or complex pulsewidth modulation (PWM) techniques have to be used. This paper proposes a harmonic elimination scheme using switched capacitor filters for a VSI-fed split-phase IM drive. Two 3-phase inverters fed from capacitors are used on the open-end side of the motor to suppress 6n +/- 1, n = odd-order harmonics. A PWM scheme that can suppress the harmonics as well as balance the capacitor voltage is also proposed. The capacitor fed inverters are switched so that the fundamental voltage is not affected, and the fundamental power is always drawn from the main inverters. The proposed scheme is verified with a detailed experimental study. The effectiveness of the scheme is demonstrated by comparing the results with those obtained by disabling the capacitor fed inverters.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a novel fast speed response control strategy for the poly-phase induction motor drive system based on flux angle. The control scheme is derived in rotor field coordinates and employs the estimation of the rotor flux and its position. An adaptive notch filter is proposed to eliminate the dc component of the integration of signals used for the rotor flux estimation. To improve the performance of the rotor flux estimator, derivative term of the back emf is incorporated in the system. The voltage components in the synchronous reference frame are generated in the controllers which are transformed to stationary reference frame for driving the motor. Space vector modulation technique is used here. Simulation of the drive system was carried out and the results were compared with those obtained for a system that produces the above mentioned voltage components using the conventional PI controller. It is observed that the proposed control methodology provides faster response than the conventional PI controller incorporated system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present work introduces a new strategy of induction machines speed adjustment using an adaptive PID (Proportional Integral Derivative) digital controller with gain planning based on the artificial neural networks. This digital controller uses an auxiliary variable to determine the ideal induction machine operating conditions and to establish the closed loop gain of the system. The auxiliary variable value can be estimated from the information stored in a general-purpose artificial neural network based on CMAC (Cerebellar Model Articulation Controller).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis describes work completed on the application of H controller synthesis to the design of controllers for single axis high speed independent drive design examples. H controller synthesis was used in a single controller format and in a self-tuning regulator, a type of adaptive controller. Three types of industrial design examples were attempted using H controller synthesis, both in simulation and on a Drives Test Facility at Aston University. The results were benchmarked against a Proportional, Integral and Derivative (PID) with velocity feedforward controller (VFF), the industrial standard for this application. An analysis of the differences between a H and PID with VFF controller was completed. A direct-form H controller was determined for a limited class of weighting function and plants which shows the relationship between the weighting function, nominal plant and the controller parameters. The direct-form controller was utilised in two ways. Firstly it allowed the production of simple guidelines for the industrial design of H controllers. Secondly it was used as the controller modifier in a self-tuning regulator (STR). The STR had a controller modification time (including nominal model parameter estimation) of 8ms. A Set-Point Gain Scheduling (SPGS) controller was developed and applied to an industrial design example. The applicability of each control strategy, PID with VFF, H, SPGS and STR, was investigated and a set of general guidelines for their use was determined. All controllers developed were implemented using standard industrial equipment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Slender rotating structures are used in many mechanical systems. These structures can suffer from undesired vibrations that can affect the components and safety of a system. Furthermore, since some these structures can operate in a harsh environment, installation and operation of sensors that are needed for closed-loop and collocated control schemes may not be feasible. Hence, the need for an open-loop non-collocated scheme for control of the dynamics of these structures. In this work, the effects of drive speed modulation on the dynamics of slender rotating structures are studied. Slender rotating structures are a type of mechanical rotating structures, whose length to diameter ratio is large. For these structures, the torsion mode natural frequencies can be low. In particular, for isotropic structures, the first few torsion mode frequencies can be of the same order as the first few bending mode frequencies. These situations can be conducive for energy transfer amongst bending and torsion modes. Scenarios with torsional vibrations experienced by rotating structures with continuous rotor-stator contact occur in many rotating mechanical systems. Drill strings used in the oil and gas industry are an example of rotating structures whose torsional vibrations can be deleterious to the components of the drilling system. As a novel approach to mitigate undesired vibrations, the effects of adding a sinusoidal excitation to the rotation speed of a drill string are studied. A portion of the drill string located within a borewell is considered and this rotating structure has been modeled as an extended Jeffcott rotor and a sinusoidal excitation has been added to the drive speed of the rotor. After constructing a three-degree-of-freedom model to capture lateral and torsional motions, the equations of motions are reduced to a single differential equation governing torsional vibrations during continuous stator contact. An approximate solution has been obtained by making use of the Method of Direct Partition of Motions with the governing torsional equation of motion. The results showed that for a rotor undergoing forward or backward whirling, the addition of sinusoidal excitation to the drive speed can cause an increase in the equivalent torsional stiffness, smooth the discontinuous friction force at contact, and reduce the regions of negative slope in the friction coefficient variation with respect to speed. Experiments with a scaled drill string apparatus have also been conducted and the experimental results show good agreement with the numerical results obtained from the developed models. These findings suggest that the extended Jeffcott rotordynamics model can be useful for studies of rotor dynamics in situations with continuous rotor-stator contact. Furthermore, the results obtained suggest that the drive speed modulation scheme can have value for attenuating drill-string vibrations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using only legal sanctions to manage the speed at which people drive ignores the potential benefits of harnessing social factors such as the influence of others. Social influences on driver speeds were explored in this qualitative examination of 67 Australian drivers. Focus group interviews with 8 driver types (young, mid-age and older males and females, and self-identified Excessive and Rare speeders) were guided by Akers’ social learning theory (Akers, 1998). Findings revealed two types of influential others: people known to the driver (passengers and parents), and unknown other drivers. Passengers were generally described as having a slowing influence on drivers: responsibility for the safety of people in the car and consideration for passenger comfort were key themes. In contrast, all but the Rare speeders reported increasing their speed when driving alone. Parental role modelling was also described. In relation to other drivers, key themes included speeding to keep up with traffic flow and perceived pressure to drive faster. This ‘pressure’ from others to ‘speed up’ was expressed in all groups and reported strategies for managing this varied. Encouragingly, examples of actual or anticipated social rewards for speeding were less common than examples of social punishments. Three main themes relating to social punishments were embarrassment, breaching the trust of others, and presenting an image of a responsible driver. Impression management and self-presentation are discussed in light of these findings. Overall, our findings indicate scope to exploit the use of social sanctions for speeding and social praise for speed limit compliance to enhance speed management strategies.