927 resultados para tumour microenvironment


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influences of physical stimuli such as surface elasticity, topography, and chemistry over mesenchymal stem cell proliferation and differentiation are well investigated. In this context, a fundamentally different approach was adopted, and we have demonstrated the interplay of inherent substrate conductivity, defined chemical composition of cellular microenvironment, and intermittent delivery of electric pulses to drive mesenchymal stem cell differentiation toward osteogenesis. For this, conducting polyaniline (PANI) substrates were coated with collagen type 1 (Coll) alone or in association with sulfated hyaluronan (sHya) to form artificial extracellular matrix (aECM), which mimics the native microenvironment of bone tissue. Further, bone marrow derived human mesenchymal stem cells (hMSCs) were cultured on these moderately conductive (10(-4)10(-3) S/cm) aECM coated PANI substrates and exposed intermittently to pulsed electric field (PEF) generated through transformer-like coupling (TLC) approach over 28 days. On the basis of critical analysis over an array of end points, it was inferred that Coll/sHya coated PANI (PANI/Coll/sHya) substrates had enhanced proliferative capacity of hMSCs up to 28 days in culture, even in the absence of PEF stimulation. On the contrary, the adopted PEF stimulation protocol (7 ms rectangular pulses, 3.6 mV/cm, 10 Hz) is shown to enhance osteogenic differentiation potential of hMSCs. Additionally, PEF stimulated hMSCs had also displayed different morphological characteristics as their nonstimulated counterparts. Concomitantly, earlier onset of ALP activity was also observed on PANI/Coll/sHya substrates and resulted in more calcium deposition. Moreover, real-time polymerase chain reaction results indicated higher mRNA levels of alkaline phosphatase and osteocalcin, whereas the expression of other osteogenic markers such as Runt-related transcription factor 2, Col1A, and osteopontin exhibited a dynamic pattern similar to control cells that are cultured in osteogenic medium. Taken together, our experimental results illustrate the interplay of multiple parameters such as substrate conductivity, electric field stimulation, and aECM coating on the modulation of hMSC proliferation and differentiation in vitro.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxovanadium(IV) complexes of vitamin-B6 Schiff base, viz., VO(HL1/L-2/L-3)(B)] Cl (1-4), where B is 2,2'-bipyridine (bpy in 1 and 2), 11-(9-acridinyl)dipyrido3,2-a:2',3'-c]phenazine (acdppz in 3 and 4), H2L1 center dot HCl is 3-hydroxy-5-(hydroxymethyl)-4-(((2-hydroxyphenyl)imino)methyl)-2-methylp yridin-1-ium chloride (in 1 and 4), HL2 is 2-(((2-(1H-imidazol-4-yl)ethyl) imino)methyl) phenol (in 2) and HL3 is 4-(((2-(1H-imidazol-4- yl)ethyl)imino)methyl)-5-(hydroxymethyl)-2-methylpyridin-3-ol (in 3) were synthesized, characterized and their cellular uptake, photo-activated cytotoxicity and intracellular localization were studied. Complexes 1a, as the perchlorate salt of 1, and 2a, as the hexafluorophosphate salt of 2, were structurally characterized. Vitamin-B6 transporting membrane carrier (VTC) mediated entry into tumour cells in preference to the normal ones seems to be responsible for the higher cellular uptake of the complexes into HeLa and MCF-7 cells over MCF-10A cells. Complexes 3 and 4 having acdppz as the photosensitizer exhibit remarkable photocytotoxicity in these cancer cells giving IC50 of < 0.9 mu M. The complexes remain non-toxic in the dark. The complexes show photo-induced apoptotic cell death via singlet oxygen (O-1(2)) generation. Fluorescence microscopy reveals specific localization of complex 4 to endoplasmic reticulum (ER) and generation of O-1(2) possibly leads to apoptotic cell death by triggering ER stress response (ERSR).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxovanadium(IV) complexes of vitamin-B6 Schiff base, viz., VO(HL1/L-2/L-3)(B)] Cl (1-4), where B is 2,2'-bipyridine (bpy in 1 and 2), 11-(9-acridinyl)dipyrido3,2-a:2',3'-c]phenazine (acdppz in 3 and 4), H2L1 center dot HCl is 3-hydroxy-5-(hydroxymethyl)-4-(((2-hydroxyphenyl)imino)methyl)-2-methylp yridin-1-ium chloride (in 1 and 4), HL2 is 2-(((2-(1H-imidazol-4-yl)ethyl) imino)methyl) phenol (in 2) and HL3 is 4-(((2-(1H-imidazol-4- yl)ethyl)imino)methyl)-5-(hydroxymethyl)-2-methylpyridin-3-ol (in 3) were synthesized, characterized and their cellular uptake, photo-activated cytotoxicity and intracellular localization were studied. Complexes 1a, as the perchlorate salt of 1, and 2a, as the hexafluorophosphate salt of 2, were structurally characterized. Vitamin-B6 transporting membrane carrier (VTC) mediated entry into tumour cells in preference to the normal ones seems to be responsible for the higher cellular uptake of the complexes into HeLa and MCF-7 cells over MCF-10A cells. Complexes 3 and 4 having acdppz as the photosensitizer exhibit remarkable photocytotoxicity in these cancer cells giving IC50 of < 0.9 mu M. The complexes remain non-toxic in the dark. The complexes show photo-induced apoptotic cell death via singlet oxygen (O-1(2)) generation. Fluorescence microscopy reveals specific localization of complex 4 to endoplasmic reticulum (ER) and generation of O-1(2) possibly leads to apoptotic cell death by triggering ER stress response (ERSR).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Gastrointestinal stromal tumours (GISTs) are the most common primary mesenchymal neoplasia in the gastrointestinal tract, although they represent only a small fraction of total gastrointestinal malignancies in adults (<2%). GISTs can be located at any level of the gastrointestinal tract; the stomach is the most common location (60-70%), in contrast to the rectum, which is most rare (4%). When a GIST invades into the adjacent prostate tissue, it can simulate prostate cancer. In this study, we report on a case comprising the unexpected collision between a rectal GIST tumour and a prostatic adenocarcinoma. Findings: We describe the complexity of the clinical, endoscopic and radiological diagnosis, of the differential diagnosis based on tumour biopsy, and of the role of neoadjuvant therapy using imatinib prior to surgical treatment. Conclusions: Although isolated cases of coexisting GISTs and prostatic adenocarcinomas have reviously been described, this is the first reported case in the medical literature of a collision tumour involving a rectal GIST and prostatic adenocarcinoma components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Human melanoma frequently colonizes bone marrow (BM) since its earliest stage of systemic dissemination, prior to clinical metastasis occurrence. However, how melanoma cell adhesion and proliferation mechanisms are regulated within bone marrow stromal cell (BMSC) microenvironment remain unclear. Consistent with the prometastatic role of inflammatory and angiogenic factors, several studies have reported elevated levels of cyclooxygenase-2 (COX-2) in melanoma although its pathogenic role in bone marrow melanoma metastasis is unknown. Methods: Herein we analyzed the effect of cyclooxygenase-2 (COX-2) inhibitor celecoxib in a model of generalized BM dissemination of left cardiac ventricle-injected B16 melanoma (B16M) cells into healthy and bacterial endotoxin lipopolysaccharide (LPS)-pretreated mice to induce inflammation. In addition, B16M and human A375 melanoma (A375M) cells were exposed to conditioned media from basal and LPS-treated primary cultured murine and human BMSCs, and the contribution of COX-2 to the adhesion and proliferation of melanoma cells was also studied. Results: Mice given one single intravenous injection of LPS 6 hour prior to cancer cells significantly increased B16M metastasis in BM compared to untreated mice; however, administration of oral celecoxib reduced BM metastasis incidence and volume in healthy mice, and almost completely abrogated LPS-dependent melanoma metastases. In vitro, untreated and LPS-treated murine and human BMSC-conditioned medium (CM) increased VCAM-1-dependent BMSC adherence and proliferation of B16M and A375M cells, respectively, as compared to basal medium-treated melanoma cells. Addition of celecoxib to both B16M and A375M cells abolished adhesion and proliferation increments induced by BMSC-CM. TNF alpha and VEGF secretion increased in the supernatant of LPS-treated BMSCs; however, anti-VEGF neutralizing antibodies added to B16M and A375M cells prior to LPS-treated BMSC-CM resulted in a complete abrogation of both adhesion-and proliferation-stimulating effect of BMSC on melanoma cells. Conversely, recombinant VEGF increased adherence to BMSC and proliferation of both B16M and A375M cells, compared to basal medium-treated cells, while addition of celecoxib neutralized VEGF effects on melanoma. Recombinant TNFa induced B16M production of VEGF via COX-2-dependent mechanism. Moreover, exogenous PGE2 also increased B16M cell adhesion to immobilized recombinant VCAM-1. Conclusions: We demonstrate the contribution of VEGF-induced tumor COX-2 to the regulation of adhesion-and proliferation-stimulating effects of TNFa, from endotoxin-activated bone marrow stromal cells, on VLA-4-expressing

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human hepatoma and normal liver cells were irradiated with C-12(6+) ion beams (linear energy transfer (LET) = 96 keV mu m(-1)) and gamma-rays at the Heavy Ion Research Facility in Lanzhou (HIRFL). The numbers and types of chromatid breaks were detected using the premature chromosome condensation technique. Irradiation with C-12(6+) ions produced a majority of isochromatid break types, while chromatid breaks were dominant for irradiation with gamma-rays. Experimental results showed that the initial level of chromatid breaks is clearly related to the absorbed dose from C-12(6+), ions and gamma-rays. The (12)C(6+)ions are relatively more effective at inducing initial chromatid breaks when compared with the gamma-rays. A relative biological effectiveness (RBE) of about 2.5 resulted for the induction of initial chromatid breaks by C-12(6+) ions relative to gamma-rays in both cell lines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hereditary sensory autonomic neuropathy IV (HSAN IV) is an autosomal recessive disorder characterised by inability to feel pain and anhidrosis and is a consequence of defective NGF/TrkA signalling and growth of sensory and sympathetic neurons. Glucocortiocoid-induced tumour necrosis factors receptor (GITR), a transmembrane protein, activated by its specific ligand, GITRL, is well known for its role in the regulation of innate and acquired immune system responses. Recently, GITR was found to be required for NGF-dependant and extracellular signal-related kinase 1/2 (ERK1/2)-induced neurite growth and target innervation in the developing sympathetic nervous system (SNS). Given this novel role of GITR, it is possible that strategies targeting GITR have potential therapeutic benefit in promoting neurite growth in autonomic neuropathies such as HSAN IV. Using P1 mouse SCG neurons as a model, in addition to various SCG cell treatments, knock down models and transfection methods, we investigated whether GITR increases the sensitivity of sympathetic neurons to NGF; the region of GITR required for the enhancement of NGF-promoted growth, the signalling pathways downstream of GITR and how extensively GITR is involved in regulating peripheral innervation of the SNS. Results indicate that the region responsible for the growth promoting effects of GITR lies in its juxtamembrane intracellular region (here termed the growth promoting domain (GPD)) of GITR. The GPD of GITR activates ERK1/2 and inhibits nuclear factor kappa B (NF-κB) in an inverse fashion to provide an optimal cellular growth environment for P1 SCG neurons. While deleting the GPD of GITR had no effect on TrkA expression, constitutive phosphorylation of specific sites in the GPD reduced TrkA expression indicating a possible role for GITR in increasing the sensitivity of SCG neurons to NGF by the regulation of these sites, TrkA expression and subsequent NGF/TrkA binding. GITR appears to be heterogeneously required for NGF-promoted target innervation of SCG neurons in some organs, implying additional factors are involved in extensive NGF-target innervation of the SNS. In conclusion, this study answers basic biological questions regarding the molecular mechanism behind the role of GITR in the development of the SNS, and provides a basis for future research if GITR modulation is to be developed as a strategy for promoting axonal growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and Aim: During carcinogenesis, tumours develop multiple mechanisms to evade the immune system and suppress the anti-tumour immune response. Upregulation of Fas Ligand (FasL/CD95L) expression may represent one such mechanism. FasL is a member of the tumour necrosis factor superfamily that triggers apoptotic cell death following ligation to its receptor Fas. Numerous studies have demonstrated upregulated FasL expression in tumor cells, with FasL expression associated with numerous pro-tumorigenic effects. However, little is known about the mechanisms that regulate FasL expression in tumours. The cyclooxgenase (COX) signalling pathway may play an important role in colon carcinogenesis, via the production of prostaglandins, in particular PGE2. PGE2 signals through four different receptor subtypes, EP1 – EP4. Thus, the aim of this study was to investigate the effect of targeting the PGE2-FasL signaling pathway. Results: (i) PGE2 induces FasL expression via the EP1 receptor in colon cancer cells. (ii) Suppression of FasL expression in colon tumour cells in vivo significantly delays and reduces tumour growth. (iii) Blocking EP1 receptor signaling, or suppression of the EP1 receptor in colon tumour cells, reduces tumour growth in vivo. Suppression of tumour growth correlates in part with suppression of FasL expression. (iv) The reduction in tumour growth is associated with an improved anti-tumour immune response. Tumour infiltration by Treg cells and macrophages was reduced, and the cytotoxic activity of CTL generated from splenocytes isolated from these mice increased. Conclusion: 1) Targeting FasL expression by blocking PGE2-EP1 receptor signalling reduces tumour development in vivo. 2) The mechanism is indirect but is associated with an increased anti-tumour immune response. Thus, unraveling the mechanisms regulating FasL expression and the pro-tumorigenic effects of the EP1 receptor may aid in the search for new therapeutic targets against colon cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The p75 neurotrophin receptor (p75NTR) is a member of the tumour necrosis factor superfamily, which relies on the recruitment of cytosolic protein partners - including the TNF receptor associated factor 6 (TRAF6) E3 ubiquitin ligase - to produce cellular responses such as apoptosis, survival, and inhibition of neurite outgrowth. Recently,p75NTR was also shown to undergo γ-secretase-mediated regulated intramembrane proteolysis, and the receptor ICD was found to migrate to the nucleus where it regulates gene transcription. Moreover, γ-secretase-mediated proteolysis was shown to be involved in glioblastoma cell migration and invasion. In this study we report that TRAF6-mediated K63-linked polyubiquitination at multiple or alternative lysine residues influences p75NTR-ICD stability in vitro. In addition, we found that TRAF6-mediated ubiquitination of p75NTR is not influenced by inhibition of dynamin. Moreover, we report beta-transducin repeats-containing protein (β-TrCP) as a novel E3- ligase that ubiquitinates p75NTR, which is independent of serine phosphorylation of the p75NTR destruction motif. In contrast to its influence on other substrates, co-expression of β-TrCP did not reduce p75NTR stability. We created U87-MG glioblastoma cell lines stably expressing wild type, γ-secretaseresistant and constitutively cleaved receptor, as well as the ICD-stabilized mutant K301R. Interestingly, only wild-type p75NTR induces increased glioblastoma cell migration, which could be reversed by application of γ-secretase inhibitor. Microarray and qRT-PCR analysis of mRNA transcripts in these cell lines yielded several promising genes that might be involved in glioblastoma cell migration and invasion, such as cadherin 11 and matrix metalloproteinase 12. Analysis of potential transcription factor binding sites revealed that transcription of these genes might be regulated by well known p75NTR signalling cascades such as NF-κB or JNK signalling, which are independent of γ-secretase-mediated cleavage of the receptor. In contrast, while p75NTR overexpression was confirmed in melanoma cell lines and a patient sample of melanoma metastasis to the brain, inhibition of γ-secretase did not influence melanoma cell migration. Collectively, this study provides several avenues to better understand the physiological importance of posttranslational modifications of p75NTR and the significance of the receptor in glioblastoma cell migration and invasion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies revealed that, upon exposure to hypoxia, tumour cells acquire resistance to the cytolytic activity of IL-2-activated lymphocytes. The MHC class I chain-related (MIC) molecules – comprised of MICA and MICB – are ligands for the activating NKG2D receptor on Natural Killer (NK) and CD8+ T cells. MIC-NKG2D interactions lead to the activation of NK and CD8+ T cells and the subsequent lysis of the tumour cells. The study also showed that the mechanism of the hypoxia-mediated immune escape involves the shedding of MIC, specifically MICA, from the tumour cell surface. The objective of the present study was to determine whether the shedding of MICA requires the expression of hypoxia inducible factor-1 (HIF-1), a transcription factor that regulates cellular adaptations to hypoxia. Exposure to hypoxia (0.5% O2 vs. 20% O2) led to the shedding of MIC from the surface of MDA-MB-231 human breast cancer cells and DU-145 human prostate cancer cells as determined by flow cytometry. Knockdown of HIF-1α mRNA using siRNA technology resulted in inhibition of HIF-1α accumulation under hypoxic conditions as determined by Western blot analysis. Parallel study revealed that knockdown of HIF-1α also blocked the shedding of MICA from the surface of MDA-MB-231 cells exposed to hypoxia. These results indicate that HIF-1 is required for the hypoxia-mediated shedding of MICA and, consequently, that HIF-1 may play an important role in tumour immune escape. Ongoing studies aim to determine the HIF-1 target genes involved in the shedding of MICA under hypoxia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relative sensitivity of neoplastic cells to DNA damaging agents is a key factor in cancer therapy. In this paper, we show that pretreatment of Burkitt's lymphoma cell lines expressing the c-met protooncogene with hepatocyte growth factor (HGF) protects them from death induced by DNA damaging agents commonly used in tumour therapy. This protection was observed in assays based on morphological assessment of apoptotic cells and DNA fragmentation assays. The protection was dose- and time-dependent — maximal protection requiring pre-incubation with 100 ng/ml HGF for 48 h. Western blotting analysis and flow cytometric studies revealed that HGF inhibited doxorubicin- and etoposide-induced decreases in the levels of the anti-apoptotic proteins Bcl-XL, and to a lesser extent Bcl-2, without inducing changes in the pro-apoptotic Bax protein. Overall, these studies suggest that the accumulation of HGF within the microenvironment of neoplastic cells may contribute to the development of a chemoresistant phenotype.