959 resultados para toll-tike receptor
Resumo:
Uropathogenic E. coli (UPEC) are the primary cause of urinary tract infections. Recent studies have demonstrated that UPEC can invade and replicate within epithelial cells, suggesting that this bacterial pathogen may occupy an intracellular niche within the host. Given that many intracellular pathogens target macrophages, we assessed the interactions between UPEC and macrophages. Colonization of the mouse bladder by UPEC strain CFT073 resulted in increased expression of myeloid-restricted genes, consistent with the recruitment of inflammatory macrophages to the site of infection. In in vitro assays, CFT073 was able to survive within primary mouse bone marrow-derived macrophages (BMM) up to 24 h post-infection. Three additional well-characterized clinical UPEC isolates associated with distinct UTI symptomatologies displayed variable long-term survival within BMM. UPEC strains UTI89 and VR50, originally isolated from patients with cystitis and asymptomatic bacteriuria respectively, showed elevated bacterial loads in BMM at 24 h post-infection as compared to CFT073 and the asymptomatic bacteriuria strain 83972. These differences did not correlate with differential effects on macrophage survival or initial uptake of bacteria. E. coli UTI89 localized to a Lamp1+ vesicular compartment within BMM. In contrast to survival within mouse BMM, intracellular bacterial loads of VR50 were low in both human monocyte-derived macrophages (HMDM) and in human T24 bladder epithelial cells. Collectively, these data suggest that some UPEC isolates may subvert macrophage anti-microbial pathways, and that host species differences may impact on intracellular UPEC survival.
Resumo:
The prognosis of epithelial ovarian cancer is poor in part due to the high frequency of chemoresistance. Recent evidence points to the Toll-like receptor-4 (TLR4), and particularly its adaptor protein MyD88, as one potential mediator of this resistance. This study aims to provide further evidence that MyD88 positive cancer cells are clinically significant, stem-like and reproducibly detectable for the purposes of prognostic stratification. Expression of TLR4 and MyD88 was assessed immunohistochemically in 198 paraffin-embedded ovarian tissues and in an embryonal carcinoma model of cancer stemness. In parallel, expression of TLR4 and MyD88 mRNA and regulatory microRNAs (miR-21 and miR-146a) was assessed, as well as in a series of chemosensitive and resistant cancer cells lines. Functional analysis of the pathway was assessed in chemoresistant SKOV-3 ovarian cancer cells. TLR4 and MyD88 expression can be reproducibly assessed via immunohistochemistry using a semi-quantitative scoring system. TLR4 expression was present in all ovarian epithelium (normal and neoplastic), whereas MyD88 was restricted to neoplastic cells, independent of tumour grade and associated with reduced progression-free and overall survival, in an immunohistological specific subset of serous carcinomas, p<0.05. MiR-21 and miR-146a expression was significantly increased in MyD88 negative cancers (p<0.05), indicating their participation in regulation. Significant alterations in MyD88 mRNA expression were observed between chemosensitive and chemoresistant cells and tissue. Knockdown of TLR4 in SKOV-3 ovarian cells recovered chemosensitivity. Knockdown of MyD88 alone did not. MyD88 expression was down-regulated in differentiated embryonal carcinoma (NTera2) cells, supporting the MyD88+ cancer stem cell hypothesis. Our findings demonstrate that expression of MyD88 is associated with significantly reduced patient survival and altered microRNA levels and suggest an intact/functioning TLR4/MyD88 pathway is required for acquisition of the chemoresistant phenotype. Ex vivo manipulation of ovarian cancer stem cell (CSC) differentiation can decrease MyD88 expression, providing a potentially valuable CSC model for ovarian cancer.
Resumo:
The transfusion of platelet concentrates (PCs) is widely used to treat thrombocytopenia and severe trauma. Ex vivo storage of PCs is associated with a storage lesion characterized by partial platelet activation and the release of soluble mediators, such as soluble CD40 ligand (sCD40L), RANTES, and interleukin (IL)-8. An in vitro whole blood culture transfusion model was employed to assess whether mediators present in PC supernatants (PC-SNs) modulated dendritic cell (DC)-specific inflammatory responses (intracellular staining) and the overall inflammatory response (cytometric bead array). Lipopolysaccharide (LPS) was included in parallel cultures to model the impact of PC-SNs on cell responses following toll-like receptor-mediated pathogen recognition. The impact of both the PC dose (10%, 25%) and ex vivo storage period was investigated [day 2 (D2), day 5 (D5), day 7 (D7)]. PC-SNs alone had minimal impact on DC-specific inflammatory responses and the overall inflammatory response. However, in the presence of LPS, exposure to PC-SNs resulted in a significant dose associated suppression of the production of DC IL-12, IL-6, IL-1a, tumor necrosis factor-a (TNF-a), and macrophage inflammatory protein (MIP)-1b and storage-associated suppression of the production of DC IL-10, TNF-a, and IL-8. For the overall inflammatory response, IL-6, TNF-a, MIP-1a, MIP-1b, and inflammatory protein (IP)-10 were significantly suppressed and IL-8, IL-10, and IL-1b significantly increased following exposure to PC-SNs in the presence of LPS. These data suggest that soluble mediators present in PCs significantly suppress DC function and modulate the overall inflammatory response, particularly in the presence of an infectious stimulus. Given the central role of DCs in the initiation and regulation of the immune response, these results suggest that modulation of the DC inflammatory profile is a probable mechanism contributing to transfusion-related complications.
Resumo:
Efforts to identify genes other than HLA-B27 in AS have been driven by the strength of the evidence from genetic epidemiology studies indicating that HLA-B27, although a major gene in AS, is clearly not the only significant gene operating. This is the case for both genetic determinants of disease-susceptibility and phenotypic characteristics such as disease severity and associated disease features. In this chapter the genetic epidemiology of AS and the gene-mapping studies performed to date will be reviewed and the future direction of research in this field discussed.
Resumo:
Asthma is a chronic inflammatory airways disease in which respiratory viral infections frequently trigger exacerbations. Current treatment of asthma with combinations of inhaled corticosteroids and long acting beta2 agonists improves asthma control and reduces exacerbations but what impact this might have on innate anti-viral immunity is unclear. We investigated the in vitro effects of asthma drugs on innate anti-viral immunity. Peripheral blood mononuclear cells (PBMC) from healthy and asthmatic donors were cultured for 24 hours with the Toll-like receptor 7 agonist, imiquimod, or rhinovirus 16 (RV16) in the presence of budesonide and/or formoterol. Production of proinflammatory cytokines and expression of anti-viral intracellular signalling molecules were measured by ELISA and RT-PCR respectively. In PBMC from healthy donors, budesonide alone inhibited IP-10 and IL-6 production induced by imiquimod in a concentration-dependent manner and the degree of inhibition was amplified when budesonide and formoterol were used in combination. Formoterol alone had little effect on these parameters, except at high concentrations (10−6 M) when IL-6 production increased. In RV16 stimulated PBMC, the combination of budesonide and formoterol inhibited IFNα and IP-10 production in asthmatic as well as healthy donors. Combination of budesonide and formoterol also inhibited RV16-stimulated expression of the type I IFN induced genes myxovirus protein A and 2′, 5′ oligoadenylate synthetise. Notably, RV16 stimulated lower levels of type Myxovirus A and oligoadenylate synthase in PBMC of asthmatics than control donors. These in vitro studies demonstrate that combinations of drugs commonly used in asthma therapy inhibit both early pro-inflammatory cytokines and key aspects of the type I IFN pathway. These findings suggest that budesonide and formoterol curtail excessive inflammation induced by rhinovirus infections in patients with asthma, but whether this inhibits viral clearance in vivo remains to be determined.
Resumo:
There is strong evidence from twin and family studies indicating that a substantial proportion of the heritability of susceptibility to ankylosing spondylitis (AS) and its clinical manifestations is encoded by non-major-histocompatibility-complex genes. Efforts to identify these genes have included genomewide linkage studies and candidate gene association studies. One region, the interleukin (IL)-1 gene complex on chromosome 2, has been repeatedly associated with AS in both Caucasians and Asians. It is likely that more than one gene in this complex is involved in AS, with the strongest evidence to date implicating IL-1A. Identifying the genes underlying other linkage regions has been difficult due to the lack of obvious candidates and the low power of most studies to date to identify genes of the small to moderate magnitude that are likely to be involved. The field is moving towards genomewide association analysis, involving much larger datasets of unrelated cases and controls. Early successes using this approach in other diseases indicates that it is likely to identify genes in common diseases like AS, but there remains the risk that the common-variant, common-disease hypothesis will not hold true in AS. Nonetheless, it is appropriate for the field to be cautiously optimistic that the next few years will bring great advances in our understanding of the genetics of this condition.
Resumo:
Ankylosing spondylitis (AS), the prototypic seronegative arthropathy, is known to be highly heritable, with >90% of the risk of developing the disease determined genetically. As with most common heritable diseases, progress in identifying the genes involved using family-based or candidate gene approaches has been slow. The recent development of the genome-wide association study approach has revolutionized genetic studies of such diseases. Early studies in ankylosing spondylitis have produced two major breakthroughs in the identification of genes contributing roughly one third of the population attributable risk of the disease, and pointing directly to a potential therapy. These exciting findings highlight the potential of future more comprehensive genetic studies of determinants of disease risk and clinical manifestations, and are the biggest advance in our understanding of the causation of the disease since the discovery of the association with HLA-B27.
Resumo:
Modulation of the immune response is an important step in the induction of protective humoral and cellular immunity against pathogens. In this study, we investigated the possibility of using a nanomaterial conjugated with the toll-like receptor (TLR) ligand CpG to modulate the immune response towards the preferred polarity. MgAl-layered double hydroxide (LDH) nanomaterial has a very similar chemical composition to Alum, an FDA approved adjuvant for human vaccination. We used a model antigen, ovalbumin (OVA) to demonstrate that MgAl-LDH had comparable adjuvant activity to Alum, but much weaker inflammation. Conjugation of TLR9 ligand CpG to LDH nanoparticles significantly enhanced the antibody response and promoted a switch from Th2 toward Th1 response, demonstrated by a change in the IgG2a:IgG1 ratio. Moreover, immunization of mice with CpG-OVA-conjugated LDH before challenge with OVA-expressing B16/F10 tumor cells retarded tumor growth. Together, these data indicate that LDH nanomaterial can be used as an immune adjuvant to promote Th1 or Th2 dominant immune responses suitable for vaccination purposes.
Resumo:
Initiation of proinflammatory host immunity in response to infection represents as a key event in effective control and containment of the pathogen at the site of infection as well as in elicitation of robust immune memory responses. In the current investigation, we demonstrate that an integral cell wall antigen of the mycobacterial envelope, Phosphatidyl-myo-inositol dimannosides (PIM2) triggers Suppressor of cytokine signaling (SOCS) 3 expression in macrophages in a Toll-like receptor 2 (TLR2)-MyD88 dependent manner. Data derived from signaling perturbations suggest the involvement of phosphoinositide-3 kinase (PI3K) and protein kinase C (PKC) signaling pathways during PIM2 induced SOCS3 expression. Further, pharmacological inhibition of ERK1/2, but not of p38 MAP kinase or JNK abrogated the induced expression of SOCS3. The PIM2 induced activation of ERK1/2 was dependent on the activation of PI3K or PKC signaling which in turn regulated p65 nuclear factor -kappa B (NF-kappa B) nuclear translocation. Overall, current study delineates the role for PI3K-PKC axis and ERK1/2 signaling as key signaling events during PIM2 induced SOCS3 expression in macrophages.
Resumo:
Activation of inflammatory immune responses during granuloma formation by the host upon infection of mycobacteria is one of the crucial steps that is often associated with tissue remodeling and breakdown of the extracellular matrix. In these complex processes, cyclooxygenase-2 (COX-2) plays a major role in chronic inflammation and matrix metalloproteinase-9 (MMP-9) significantly in tissue remodeling. In this study, we investigated the molecular mechanisms underlying Phosphatidyl-myo-inositol dimannosides (PIM2), an integral component of the mycobacterial envelope, triggered COX-2 and MMP-9 expression in macrophages. PIM2 triggers the activation of Phosphoinositide-3 Kinase (PI3K) and Notch1 signaling leading to COX-2 and MMP-9 expression in a Toll-like receptor 2 (TLR2)-MyD88 dependent manner. Notch1 signaling perturbations data demonstrate the involvement of the cross-talk with members of PI3K and Mitogen activated protein kinase pathway. Enforced expression of the cleaved Notch1 in macrophages induces the expression of COX-2 and MMP-9. PIM2 triggered significant p65 nuclear factor-kappa B (NF-kappa B) nuclear translocation that was dependent on activation of PI3K or Notch1 signaling. Furthermore, COX-2 and MMP-9 expression requires Notch1 mediated recruitment of uppressor of Hairless (CSL) and NF-kappa B to respective promoters. Inhibition of PIM2 induced COX-2 resulted in marked reduction in MMP-9 expression clearly implicating the role of COX-2 dependent signaling events in driving the MMP-9 expression. Taken together, these data implicate PI3K and Notch1 signaling as obligatory early proximal signaling events during PIM2 induced COX-2 and MMP-9 expression in macrophages.
Resumo:
Hantaviruses have a tri-segmented negative-stranded RNA genome. The S segment encodes the nucleocapsid protein (N), M segment two glycoproteins, Gn and Gc, and the L segment the RNA polymerase. Gn and Gc are co-translationally cleaved from a precursor and targeted to the cis-Golgi compartment. The Gn glycoprotein consists of an external domain, a transmembrane domain and a C-terminal cytoplasmic domain. In addition, the S segment of some hantaviruses, including Tula and Puumala virus, have an open reading frame (ORF) encoding a nonstructural potein NSs that can function as a weak interferon antagonist. The mechanisms of hantavirus-induced pathogenesis are not fully understood but it is known that both hemorrhagic fever with renal syndrome (HFRS) and hantavirus (cardio) pulmonary syndrome (HCPS) share various features such as increased capillary permeability, thrombocytopenia and upregulation of TNF-. Several hantaviruses have been reported to induce programmed cell death (apoptosis), such as TULV-infected Vero E6 cells which is known to be defective in interferon signaling. Recently reports describing properties of the hantavirus Gn cytoplasmic tail (Gn-CT) have appeared. The Gn-CT of hantaviruses contains animmunoreceptor tyrosine-based activation motif (ITAM) which directs receptor signaling in immune and endothelial cells; and contain highly conserved classical zinc finger domains which may have a role in the interaction with N protein. More functions of Gn protein have been discovered, but much still remains unknown. Our aim was to study the functions of Gn protein from several aspects: synthesis, degradation and interaction with N protein. Gn protein was reported to inhibit interferon induction and amplication. For this reason, we also carried out projects studying the mechanisms of IFN induction and evasion by hantavirus. We first showed degradation and aggresome formation of the Gn-CT of the apathogenic TULV. It was reported earlier that the degradation of Gn-CT is related to the pathogenicity of hantavirus. We found that the Gn-CT of the apathogenic hantaviruses (TULV, Prospect Hill virus) was degraded through the ubiquitin-proteasome pathway, and TULV Gn-CT formed aggresomes upon treatment with proteasomal inhibitor. Thus the results suggest that degradation and aggregation of the Gn-CT may be a general property of most hantaviruses, unrelated to pathogenicity. Second, we investigated the interaction of TULV N protein and the TULV Gn-CT. The Gn protein is located on the Golgi membrane and its interaction with N protein has been thought to determine the cargo of the hantaviral ribonucleoprotein which is an important step in virus assembly, but direct evidence has not been reported. We found that TULV Gn-CT fused with GST tag expressed in bacteria can pull-down the N protein expressed in mammalian cells; a mutagenesis assay was carried out, in which we found that the zinc finger motif in Gn-CT and RNA-binding motif in N protein are indispensable for the interaction. For the study of mechanisms of IFN induction and evasion by Old World hantavirus, we found that Old World hantaviruses do not produce detectable amounts of dsRNA in infected cells and the 5 -termini of their genomic RNAs are monophosphorylated. DsRNA and tri-phosphorylated RNA are considered to be critical activators of innate immnity response by interacting with PRRs (pattern recognition receptors). We examined systematically the 5´-termini of hantavirus genomic RNAs and the dsRNA production by different species of hantaviruses. We found that no detectable dsRNA was produced in cells infected by the two groups of the old world hantaviruses: Seoul, Dobrava, Saaremaa, Puumala and Tula. We also found that the genomic RNAs of these Old World hantaviruses carry 5´-monophosphate and are unable to trigger interferon induction. The antiviral response is mainly mediated by alpha/beta interferon. Recently the glycoproteins of the pathogenic hantaviruses Sin Nombre and New York-1 viruses were reported to regulate cellular interferon. We found that Gn-CT can inhibit the induction of IFN activation through Toll-like receptor (TLR) and retinoic acid-inducible gene I-like RNA helicases (RLH) pathway and that the inhibition target lies at the level of TANK-binding kinase 1 (TBK-1)/ IKK epislon complex and myeloid differentiation primary response gene (88) (MyD88) / interferon regulatory factor 7 (IRF-7) complex.
Resumo:
Synthetic CpG containing oligodeoxynucleotide Toll like receptor-9 agonist (CpG DNA) activates innate immunity and can stimulate antigen presentation against numerous intracellular pathogens. It was observed that Salmonella Typhimurium growth can be inhibited by the CpG DNA treatment in the murine dendritic cells. This inhibitory effect was mediated by an increased reactive oxygen species production. In addition, it was noted that CpG DNA treatment of dendritic cells during Salmonella infection leads to an increased antigen presentation. Further this increased antigen presentation was dependent on the enhanced reactive oxygen species production elicited by Toll like receptor-9 activation. With the help of an exogenous antigen it was shown that Salmonella antigen could also be cross-presented in a better way by CpG induction. These data collectively indicate that CpG DNA enhance the ability of murine dendritic cells to contain the growth of virulent Salmonella through reactive oxygen species dependent killing.
Resumo:
Pathogenic rnycobacteria, including Mycobacterium tuberculosis and Mycobacterium bovis, cause significant morbidity and mortality worldwide. However, the vaccine strain Mycobacterium bovis BCG, unlike virulent strains, triggers extensive apoptosis of infected macrophages, a step necessary for the elicitation of robust protective immunity. We here demonstrate that M. bovis BCG triggers Toll-like receptor 2 (TLR2)-dependent microRNA-155 (miR-155) expression, which involves signaling cross talk among phosphatidylinositol 3-kinase (PI3K), protein kinase C delta (PKC delta), and mitogen-activated protein kinases (MAPKs) and recruitment of NF-kappa B and c-ETS to miR-155 promoter. Genetic and signaling perturbations presented the evidence that miR-155 regulates PKA signaling by directly targeting a negative regulator of PKA, protein kinase inhibitor alpha (PKI-alpha). Enhanced activation of PKA signaling resulted in the generation of PKA C-alpha; phosphorylation of MSK1, cyclic AMP response element binding protein (CREB), and histone H3; and recruitment of phospho-CREB to the apoptotic gene promoters. The miR-155-triggered activation of caspase-3, BAK1, and cytochrome c translocation involved signaling integration of MAPKs and epigenetic or posttranslational modification of histones or CREB. Importantly, M. bovis BCG infection-induced apoptosis was severely compromised in macrophages derived from miR-155 knockout mice. Gain-of-function and loss-of-function studies validated the requirement of miR-155 for M. bovis BCG's ability to trigger apoptosis. Overall, M. bovis BCG-driven miR-155 dictates cell fate decisions of infected macrophages, strongly implicating a novel role for miR-155 in orchestrating cellular reprogramming during immune responses to mycobacterial infection.
Resumo:
The molecular mechanism of antimony-resistant Leishmania donovani ((SbLD)-L-R)-driven up-regulation of IL-10 and multidrug-resistant protein 1 (MDR1) in infected macrophages (M phi s) has been investigated. This study showed that both promastigote and amastigote forms of (SbLD)-L-R, but not the antimony-sensitive form of LD, express a unique glycan with N-acetylgalactosamine as a terminal sugar. Removal of it either by enzyme treatment or by knocking down the relevant enzyme, galactosyltransferase in (SbLD)-L-R (KD (SbLD)-L-R), compromises the ability to induce the above effects. Infection of M phi s with KD (SbLD)-L-R enhanced the sensitivity toward antimonials compared with infection with (SbLD)-L-R, and infection of BALB/c mice with KD (SbLD)-L-R caused significantly less organ parasite burden compared with infection induced by (SbLD)-L-R. The innate immune receptor, Toll-like receptor 2/6 heterodimer, is exploited by (SbLD)-L-R to activate ERK and nuclear translocation of NF-kappa B involving p50/c-Rel leading to IL-10 induction, whereas MDR1 up-regulation is mediated by PI3K/Akt and the JNK pathway. Interestingly both recombinant IL-10 and (SbLD)-L-R up-regulate MDR1 in M. with different time kinetics, where phosphorylation of PI3K was noted at 12 h and 48 h, respectively, but M phi s derived from IL-10(-/-) mice are unable to show MDR1 up-regulation on infection with (SbLD)-L-R. Thus, it is very likely that an IL-10 surge is a prerequisite for MDR1 up-regulation. The transcription factor important for IL-10-driven MDR1 up-regulation is c-Fos/c-Jun and not NF-kappa B, as evident from studies with pharmacological inhibitors and promoter mapping with deletion constructs.
Resumo:
Background and PurposeStudies have demonstrated that a moderate intake of amino acids is associated with development of bone health. Methionine, a sulphur-containing essential amino acid, has been largely implicated for improving cartilage formation, however its physiological significance on bone integrity and functionality have not been elucidated. We investigated whether methionine can prevent osteoporotic bone loss. Experimental ApproachThe anti-resorptive effect of methionine, (250mgkg(-1) body wt administered in drinking water for 10 weeks), was evaluated in ovariectomized (OVX) rats by monitoring changes in bone turnover, formation of osteoclasts from blood-derived mononuclear cells and changes in the synthesis of pro-osteoclastogenic cytokines. Key resultsMethionine improved bone density and significantly decreased the degree of osteoclast development from blood mononuclear cells in OVX rats, as indicated by decreased production of osteoclast markers tartarate resistant acid phosphatase b (TRAP5b) and MIP-1. siRNA-mediated knockdown of myeloid differentiation primary response 88 MyD88], a signalling molecule in the toll-like receptor (TLR) signalling cascade, abolished the synthesis of both TRAP5b and MIP-1 in developing osteoclasts. Methionine supplementation disrupted osteoclast development by inhibiting TLR-4/MyD88/NF-B pathway. Conclusions and ImplicationsTLR-4/MyD88/NF-B signalling pathway is integral for osteoclast development and this is down-regulated in osteoporotic system on methionine treatment. Methionine treatment could be beneficial for the treatment of postmenopausal osteoporosis.