974 resultados para tidal delta
Resumo:
A structural investigation of cubic oxides (space group I23) of the formula Bi(26-x)M(x)O(40-delta) (M = Ti, Mn, Fe, Co, Ni and Pb) related to the Y-Bi2O3 phase has been carried out by the Rietveld profile analysis of high-resolution X-ray powder diffraction data in order to establish the cation distributions. Compositional dependence of the cation distribution has been examined in the case of Bi26-xCoxO40-delta (1 < x < 16). The study reveals that in Bi(26-X)M(X)O(40-delta) with M = Ti, Mn, Fe, Co or Pb, the M cations tend to occupy tetrahedral (2a) sites when x < 2 while the octahedral (24f) sites are shared by the excess Co or Ni cations with Bi atoms when x > 2. Also experimental magnetic moments of Mn, Co and Ni derivatives have been used to establish the valence state and distribution of these cations.
Resumo:
Palladium substituted in cerium dioxide in the form of a solid solution, Ce-0.98 Pd-0.02 O-1.98 is a new heterogeneous catalyst which exhibits high activity and 100% trans-selectivity for the Heck reactions of aryl bromides including heteroaryls with olefins. The catalytic reactions work without any ligand. Nano-crystalline Ce-0.98 Pd-0.02 O-1.98 is prepared by solution combustion method and Pd is in +2 state. The catalyst can be separated, recovered and reused without significant loss in activity.
Resumo:
The chemical modifications of structure, reactivity and catalytic properties of layered triple perovskite oxides, related to the YBa2Cu3O7-delta (123) system, have been briefly reviewed. These oxides form a versatile family of materials with wide-ranging chemical and physical properties. The multiple sites available for chemical doping, and the ability to reversibly intercalate oxygen at the defect sites have rendered these oxides important model systems in the area of oxide catalysis. An attempt has been made to comprehend the hitherto known catalytic reactions and correlate them to various factors like structure, oxygen diffusional limitations, different geometries adopted by various substituents, oxidative non-stoichiometry and activation energy for oxygen desorption. In particular, results on the enhanced catalytic activity of cobalt-substituted 123 oxide systems towards the selective catalytic oxidation of ammonia to nitric oxide and carbon monoxide to carbon dioxide are presented.
Resumo:
The paper presents the importance of the Nocturnal Boundary Layer in driving the diurnal variability of the atmospheric CO2 mixing ratio and the carbon isotope ratio at ground level from an urban station in India. Our observations are the first of their kind from this region. The atmospheric CO2 mixing ratio and the carbon isotopic ratio were measured for both the morning (05:30-07:30 IST) and afternoon time (16:00-18:00 IST) air samples at 5 m above ground level in Bangalore city, Karnataka State (12 degrees 58' N, 77 degrees 38' E, masl = 920 m) for a 10 day period during the winter of 2008. We observed a change of similar to 7% the in CO2 mixing ratio between the morning and afternoon time air samples. A stable isotope analysis of CO2 from morning samples showed a depletion in the carbon isotope ratio by similar to 2 parts per thousand compared to the afternoon samples. Along with the ground-based measurement of air samples, data of radiosonde measurements were also obtained from the Indian Meteorological Department to identify the vertical atmospheric structure at different time in a day. We proposed the presence or absence of the NBL as a controlling factor for the observed variability in the mixing ratio as well as its isotopic composition. Here we used the Keeling model approach to find out the carbon isotope ratio for the local sources. The local sources have further been characterized as anthropogenic and biological respiration (in %) using a two-component mixing model. We also used a vertical mixing model based on the concept of the mixing of isotopically depleted (carbon isotope) ``polluted air'' (PA) with isotopically enriched ``free atmospheric air'' (FA) above. Using this modeling approach, the contribution of FA at ground level is being estimated for both the morning and afternoon time air samples.
Resumo:
The crystal structure of the dehydro octapeptide Boc-Val-Delta Phe-Phe-Ala-Leu-Ala-Delta Phe-Leu-OH has been determined to atomic resolution by X-ray crystallographic methods. The crystals grown by slow evaporation of peptide solution in methanol/water are orthorhombic, space group P2(1)2(1)2(1). The unit cell parameters are a = 8.404(3), b = 25.598(2) and c = 27.946(3) Angstrom, Z = 4. The agreement factor is R = 7.58% for 3636 reflections having (\F-o\) greater than or equal to 3 sigma (\F-o\). The peptide molecule is characterised by a 3(10)-helix at the N-terminus and a pi-turn at the C-terminus. This conformation is exactly similar to the helix termination features observed in proteins. The pi-turn conformation observed in the octapeptide is in good agreement with the conformational features of pi-turns seen in some proteins. The alpha(L)-position in the pi-turn of the octapeptide is occupied by Delta Phe(7), which shows that even bulky residues can be accommodated in this position of the pi-turns. In proteins, it is generally seen that alpha(L)-position is occupied by glycine residue. No intermolecular head-to-tail hydrogen bonds are observed in solid state structure of the octapeptide. A water molecule located in the unit cell of the peptide molecule is mainly used to hold the peptide molecule together in the crystal. The conformation observed for the octapeptide might be useful to understand the helix termination and chain reversal in proteins and to construct helix terminators for denovo protein design.
Resumo:
The first fabrication of self-doped La1-xMnO3-delta films which are unique among the other La(1-x)M(x)MnO(3) (M = Ca, Ba and Pb) thin films showing giant magnetoresistance is reported. Ag-doped La0.7MnO3-delta films were grown on LaAlO3[100] substrates. These films show ferromagnetic and metal-insulator transition at 220 K and exhibit giant magnetoresistance (GMR) with Delta R/R(o) = 85% and Delta R/R(H) > 550%. Without silver addition these self-doped films are non-magnetic, Enhancement in GMR up to 8% has been observed in superlattices having alternate magnetic and non-magnetic La1-xMnO3-delta layers.
Resumo:
Following considerations of geometry and the similarity between chromate and carbonate groups in terms of size and charge, we have investigated the possibility of replacing the two-coordinate Cu-I in superconducting lead cuprates of the general formula Pb2Sr2(Ca, Y)CU3O8 by Cr. A high-resolution electron microscopy study coupled with energy dispersive X-ray analysis on small crystals of the title phases suggests that between 10 and 15% of the Cu-I can be replaced by Cr. While from the present structural study using HRTEM and Rietveld refinement of X-ray powder data we are unable to precisely obtain the oxidation state and oxygen coordination of Cr, we suggest in analogy with Cr substitution in other similar cuprates that in the title phases (CuO2)-O-I rods are partially replaced by tetrahedral CrO42- groups. Infrared spectroscopy supports the presence of CrO42- groups. The phases Pb1.75Sr2Ca0.2Y0.8O8+delta and Pb1.75Sr2Ca0.2Y0.8CCu2.85Cr0.15O8+delta are superconducting as-prepared, but the substitution of Cr for Cu-I results in a decrease of the Te as well as the superconducting volume fraction. (C) 1996 Academic Press, lnc.
Resumo:
We have synthesised and determined the solution conformation and X-ray crystal structure of the octapeptide Ac-Delta Phe(1)-Val(2)-Delta Phe(3)-Phe(4)-Ala(5)-Val(6)-Delta Phe(7)-Gly(8)-OCH3 (Delta Phe = alpha,beta-dehydrophenylalanine) containing three Delta Phe residues as conformation constraining residues. In the solid state, the peptide folds into (i) an N-terminal (3)10(R)-helical pentapeptide segment, (ii) a middle non-helical segment, and (iii) a C-terminal incipient (3)10(L)-helical segment. The results of H-1 NMR data also suggest that a similar multiple-turn conformation for the peptide is largely maintained in solution. Though the C-terminal helix is incipient, the overall conformation of the octapeptide matches well with the conformation of the hairpins reported. Comparison of the pi-turn seen in the octapeptide molecule with those observed in proteins at the C-terminal end of helixes shows the structural similarity among them. A water molecule mediates the 5 --> 2 hydrogen bond in the pi-turn region. This is the first example of a water-inserted pi-turn in oligopeptides reported so far. Comparison between the present octapeptide and another (3)10(R)-helical dehydro nonapeptide Boc-Val-Delta Phe-Phe-Ala-Phe-Delta Phe-Val-Delta Phe-Gly-OCH3 solved by us recently, demonstrates the possible sequence-dependent conformational variations in alpha,beta-dehydrophenylalanine-containing oligopeptides.
Resumo:
The paper examines the suitability of the generalized data rule in training artificial neural networks (ANN) for damage identification in structures. Several multilayer perceptron architectures are investigated for a typical bridge truss structure with simulated damage stares generated randomly. The training samples have been generated in terms of measurable structural parameters (displacements and strains) at suitable selected locations in the structure. Issues related to the performance of the network with reference to hidden layers and hidden. neurons are examined. Some heuristics are proposed for the design of neural networks for damage identification in structures. These are further supported by an investigation conducted on five other bridge truss configurations.
Resumo:
alpha,beta-Dehydrophenylalanine residues constrain the peptide backbone to beta-bend conformation. A pentapeptide containing four consecutive (Delta Phe) residues has been synthesised and crystallised. The peptide Boc-LAla-Delta Phe-Delta Phe-Delta Phe-Delta Phe-NHMe (C45H46N6O7, MW = 782.86) was crystallised from an acetonitrile/methanol mixture. The crystal belongs to the orthorhombic space group P2(1)2(1)2(1) With a = 19.455(6), b = 20.912(9), c = 11.455(4) Angstrom and Z = 4. The X-ray (MoKalpha, lambda = 0.7107 Angstrom) intensity data were collected using the Rigaku-AFC7 diffractrometer. The crystal structure was determined by direct methods and refined using the least-squares technique, R = 8.41% for 1827 reflections with \F-o\ > 4 sigma\F-o\. The molecule contains the largest stretch of consecutive dehydrophenylalanine residues whose crystal structure has been determined so far. The peptide adopts left-handed 3(10)-helical conformation despite the presence of LAla at the N-terminus. The mean phi, psi values, averaged across the last four residues are 56.8 degrees and 17.5 degrees, respectively. There are four 4-->1 intramolecular hydrogen bonds, characteristic of the 3(10)-helix. In the crystal each molecule interacts with four crystallographically symmetric molecules with one hydrogen bond each.
Resumo:
We report a systematic study of the electronic transport properties of the metallic perovskite oxide LaNiO3-delta as a function of the oxygen stoichiometry delta (delta less than or equal to 0.14). The electrical resistivity, magnetoresistance, susceptibility, Hall effect and thermopower have been studied, All of the transport coefficients are dependent on the value of delta. The resistivity increases almost exponentially as delta increases. We relate this increase in rho to the creation of Ni2+ with square-planar coordination. We find that there is a distinct T-1.5-contribution to the resistivity over the whole temperature range. The thermopower is negative, as expected for systems with electrons as the carrier, but the Hall coefficient is positive. We have given a qualitative and quantitative explanation for the different quantities observed and their systematic variation with the stoichiometry delta.
Resumo:
The standard Gibbs energies of formation of lanthanum orthoferrite (LaFeO3-delta) and hexaferrite (LaFe12O19)were determined using solid-state electrochemical cells incorporating yttria-stabilized zirconia as the electrolyte and pure oxygen gas at ambient pressure as the reference electrode. From emf of the solid-state cell, the Gibbs energy of formation of nonstoichiometric orthoferrite (LaFeO3-delta) is obtained. To derive values for the stoichiometric phase, variation of the oxygen nonstoichiometric parameter with oxygen partial pressure was measured using thermogravimetry under controlled gas mixtures. The results obtained for LaFeO3 and LaFe12O19 can be summarized by the following equations, which represent the formation of ternary oxides from their component binary oxides: 1/2 La2O3 + 1/2 Fe2O3 -> LaFeO3: Delta G degrees (LaFeO3) (+/- 450) (J mol(-1)) = -62920 - 2.12T (K), and 1/2 La2O3 + 9/2Fe(2)O(3) + Fe3O4 -> LaFe12O19; Delta G degrees (LaFe12O19) (+/- 200) (J mol(-1)) = -103900 + 21.25T (K). These data are discussed critically in comparison with thermodynamic values reported in the literature from a variety of measurements. The values obtained in this study are consistent with calorimetric entropy and enthalpy of formation of the perovskite phase and with some of the Gibbs energy measurements reported in the literature. For the lanthanum hexaferrite (LaFe12O19) there are no prior thermodynamic measurements for comparison. (c) 2011 Elsevier B.V. All rights reserved.
Resumo:
An N-alpha-protected model pentapeptide containing two consecutive Delta Phe residues, Boc-Leu-Delta Phe-Delta Phe-Ala-Phe-NHMe, has been synthesized by solution methods and fully characterized. H-1-nmr studies provided evidence for the occurrence of a significant population of a conformer having three consecutive, intramolecularly II-bonded beta-bends in solution. The solid state structure has been determined by x-ray diffraction methods. The crystals grown from aqueous methanol are orthorhombic, space group P2(1)2(1)2(1),, a = 11.503(2), b = 16.554(2), c = 22.107(3) Angstrom, V = 4209(1) Angstrom,(3) and Z = 4. The x-ray data were collected on a CAD4 diffractometer using CuKalpha radiation (lambda = 1.5418 Angstrom). The structure was determined using direct methods and refined by full-matrix least-squares procedure. The R factor is 5.3%. The molecule is characterized by a right handed 3(10)-helical conformation ((phi) = -68.2 degrees (psi) = -26.3 degrees), which is made up of two consecutive type III beta-bends and one type I beta-bend. In the solid state the helical molecules are aligned head-to-tail, thus forming long rod like structures. A comparison with other peptide structures containing consecutive Delta Phe residues is also provided. The present study confirms that the -Delta Phe-Delta Phe-sequence can be accommodated in helical structures. (C) 1997 John Wiley & Sons, Inc.
Resumo:
Thick films of YBa2Cu3O7-delta fabricated on polycrystalline Ba2RETaO6 (where RE= Pr, Nd, Eu, and Dy) substrates by dip-coating and partial melting techniques are textured and c-axis oriented, showing predominantly (00l) orientation. All the thick films show a superconducting zero resistance transition of 90 K. SEM studies clearly indicate platelike and needlelike grain growth over a wide area of the thick films. The values of the critical current density for these thick films are similar to 10(4) A/cm(2) at 77 K as determined by the nonresonant R.F. absorption method. Various processing conditions that affect the critical current density of thick films are also discussed.