959 resultados para third-order non-linearity
Resumo:
Coupled-cluster (CC) theory is one of the most successful approaches in high-accuracy quantum chemistry. The present thesis makes a number of contributions to the determination of molecular properties and excitation energies within the CC framework. The multireference CC (MRCC) method proposed by Mukherjee and coworkers (Mk-MRCC) has been benchmarked within the singles and doubles approximation (Mk-MRCCSD) for molecular equilibrium structures. It is demonstrated that Mk-MRCCSD yields reliable results for multireference cases where single-reference CC methods fail. At the same time, the present work also illustrates that Mk-MRCC still suffers from a number of theoretical problems and sometimes gives rise to results of unsatisfactory accuracy. To determine polarizability tensors and excitation spectra in the MRCC framework, the Mk-MRCC linear-response function has been derived together with the corresponding linear-response equations. Pilot applications show that Mk-MRCC linear-response theory suffers from a severe problem when applied to the calculation of dynamic properties and excitation energies: The Mk-MRCC sufficiency conditions give rise to a redundancy in the Mk-MRCC Jacobian matrix, which entails an artificial splitting of certain excited states. This finding has established a new paradigm in MRCC theory, namely that a convincing method should not only yield accurate energies, but ought to allow for the reliable calculation of dynamic properties as well. In the context of single-reference CC theory, an analytic expression for the dipole Hessian matrix, a third-order quantity relevant to infrared spectroscopy, has been derived and implemented within the CC singles and doubles approximation. The advantages of analytic derivatives over numerical differentiation schemes are demonstrated in some pilot applications.
Resumo:
The maximum principle is an important property of solutions to PDE. Correspondingly, it's of great interest for people to design a high order numerical scheme solving PDE with this property maintained. In this thesis, our particular interest is solving convection-dominated diffusion equation. We first review a nonconventional maximum principle preserving(MPP) high order finite volume(FV) WENO scheme, and then propose a new parametrized MPP high order finite difference(FD) WENO framework, which is generalized from the one solving hyperbolic conservation laws. A formal analysis is presented to show that a third order finite difference scheme with this parametrized MPP flux limiters maintains the third order accuracy without extra CFL constraint when the low order monotone flux is chosen appropriately. Numerical tests in both one and two dimensional cases are performed on the simulation of the incompressible Navier-Stokes equations in vorticity stream-function formulation and several other problems to show the effectiveness of the proposed method.
Resumo:
The completion of the third-order QCD corrections to the inclusive top-pair production cross section near threshold demonstrates that the strong dynamics is under control at the few percent level. In this paper we consider the effects of the Higgs boson on the cross section and, for the first time, combine the third-order QCD result with the third-order P-wave, the leading QED and the leading non-resonant contributions. We study the size of the different effects and investigate the sensitivity of the cross section to variations of the top-quark Yukawa coupling due to possible new physics effects.
Resumo:
We present the third-order QCD prediction for the production of top antitop quark pairs in electron-positron collisions close to the threshold in the dominant S-wave state. We observe a significant reduction of the theoretical uncertainty and discuss the sensitivity to the top quark mass and width.
Resumo:
The Taylor rule has become one of the most studied strategies for monetary policy. Yet, little is known whether the Federal Reserve follows a non-linear Taylor rule. This paper employs the smooth transition regression model and asks the question: does the Federal Reserve change its policy-rule according to the level of inflation and/or the output gap? I find that the Federal Reserve does follow a non-linear Taylor rule and, more importantly, that the Federal Reserve followed a non-linear Taylor rule during the golden era of monetary policy, 1985-2005, and a linear Taylor rule throughout the dark age of monetary policy, 1960-1979. Thus, good monetary policy is associated with a non-linear Taylor rule: once inflation approaches a certain threshold, the Federal Reserve adjusts its policy-rule and begins to respond more forcefully to inflation.
Resumo:
This article presents a time domain approach to the flutter analysis of a missile-type wing/body configuration with concentrated structural non-linearities. The missile wing is considered fully movable and its rotation angle contains the structural freeplay-type non-linearity. Although a general formulation for flexible configurations is developed, only two rigid degrees of freedom are taken into account for the results: pitching of the whole wing/body configuration and wing rotation angle around its hinge. An unsteady aerodynamic model based on the slender-body approach is used to calculate aerodynamic generalized forces. Limit-cycle oscillations and chaotic motion below the flutter speed are observed in this study.
Resumo:
Nowadays, Computational Fluid Dynamics (CFD) solvers are widely used within the industry to model fluid flow phenomenons. Several fluid flow model equations have been employed in the last decades to simulate and predict forces acting, for example, on different aircraft configurations. Computational time and accuracy are strongly dependent on the fluid flow model equation and the spatial dimension of the problem considered. While simple models based on perfect flows, like panel methods or potential flow models can be very fast to solve, they usually suffer from a poor accuracy in order to simulate real flows (transonic, viscous). On the other hand, more complex models such as the full Navier- Stokes equations provide high fidelity predictions but at a much higher computational cost. Thus, a good compromise between accuracy and computational time has to be fixed for engineering applications. A discretisation technique widely used within the industry is the so-called Finite Volume approach on unstructured meshes. This technique spatially discretises the flow motion equations onto a set of elements which form a mesh, a discrete representation of the continuous domain. Using this approach, for a given flow model equation, the accuracy and computational time mainly depend on the distribution of nodes forming the mesh. Therefore, a good compromise between accuracy and computational time might be obtained by carefully defining the mesh. However, defining an optimal mesh for complex flows and geometries requires a very high level expertize in fluid mechanics and numerical analysis, and in most cases a simple guess of regions of the computational domain which might affect the most the accuracy is impossible. Thus, it is desirable to have an automatized remeshing tool, which is more flexible with unstructured meshes than its structured counterpart. However, adaptive methods currently in use still have an opened question: how to efficiently drive the adaptation ? Pioneering sensors based on flow features generally suffer from a lack of reliability, so in the last decade more effort has been made in developing numerical error-based sensors, like for instance the adjoint-based adaptation sensors. While very efficient at adapting meshes for a given functional output, the latter method is very expensive as it requires to solve a dual set of equations and computes the sensor on an embedded mesh. Therefore, it would be desirable to develop a more affordable numerical error estimation method. The current work aims at estimating the truncation error, which arises when discretising a partial differential equation. These are the higher order terms neglected in the construction of the numerical scheme. The truncation error provides very useful information as it is strongly related to the flow model equation and its discretisation. On one hand, it is a very reliable measure of the quality of the mesh, therefore very useful in order to drive a mesh adaptation procedure. On the other hand, it is strongly linked to the flow model equation, so that a careful estimation actually gives information on how well a given equation is solved, which may be useful in the context of _ -extrapolation or zonal modelling. The following work is organized as follows: Chap. 1 contains a short review of mesh adaptation techniques as well as numerical error prediction. In the first section, Sec. 1.1, the basic refinement strategies are reviewed and the main contribution to structured and unstructured mesh adaptation are presented. Sec. 1.2 introduces the definitions of errors encountered when solving Computational Fluid Dynamics problems and reviews the most common approaches to predict them. Chap. 2 is devoted to the mathematical formulation of truncation error estimation in the context of finite volume methodology, as well as a complete verification procedure. Several features are studied, such as the influence of grid non-uniformities, non-linearity, boundary conditions and non-converged numerical solutions. This verification part has been submitted and accepted for publication in the Journal of Computational Physics. Chap. 3 presents a mesh adaptation algorithm based on truncation error estimates and compares the results to a feature-based and an adjoint-based sensor (in collaboration with Jorge Ponsín, INTA). Two- and three-dimensional cases relevant for validation in the aeronautical industry are considered. This part has been submitted and accepted in the AIAA Journal. An extension to Reynolds Averaged Navier- Stokes equations is also included, where _ -estimation-based mesh adaptation and _ -extrapolation are applied to viscous wing profiles. The latter has been submitted in the Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. Keywords: mesh adaptation, numerical error prediction, finite volume Hoy en día, la Dinámica de Fluidos Computacional (CFD) es ampliamente utilizada dentro de la industria para obtener información sobre fenómenos fluidos. La Dinámica de Fluidos Computacional considera distintas modelizaciones de las ecuaciones fluidas (Potencial, Euler, Navier-Stokes, etc) para simular y predecir las fuerzas que actúan, por ejemplo, sobre una configuración de aeronave. El tiempo de cálculo y la precisión en la solución depende en gran medida de los modelos utilizados, así como de la dimensión espacial del problema considerado. Mientras que modelos simples basados en flujos perfectos, como modelos de flujos potenciales, se pueden resolver rápidamente, por lo general aducen de una baja precisión a la hora de simular flujos reales (viscosos, transónicos, etc). Por otro lado, modelos más complejos tales como el conjunto de ecuaciones de Navier-Stokes proporcionan predicciones de alta fidelidad, a expensas de un coste computacional mucho más elevado. Por lo tanto, en términos de aplicaciones de ingeniería se debe fijar un buen compromiso entre precisión y tiempo de cálculo. Una técnica de discretización ampliamente utilizada en la industria es el método de los Volúmenes Finitos en mallas no estructuradas. Esta técnica discretiza espacialmente las ecuaciones del movimiento del flujo sobre un conjunto de elementos que forman una malla, una representación discreta del dominio continuo. Utilizando este enfoque, para una ecuación de flujo dado, la precisión y el tiempo computacional dependen principalmente de la distribución de los nodos que forman la malla. Por consiguiente, un buen compromiso entre precisión y tiempo de cálculo se podría obtener definiendo cuidadosamente la malla, concentrando sus elementos en aquellas zonas donde sea estrictamente necesario. Sin embargo, la definición de una malla óptima para corrientes y geometrías complejas requiere un nivel muy alto de experiencia en la mecánica de fluidos y el análisis numérico, así como un conocimiento previo de la solución. Aspecto que en la mayoría de los casos no está disponible. Por tanto, es deseable tener una herramienta que permita adaptar los elementos de malla de forma automática, acorde a la solución fluida (remallado). Esta herramienta es generalmente más flexible en mallas no estructuradas que con su homóloga estructurada. No obstante, los métodos de adaptación actualmente en uso todavía dejan una pregunta abierta: cómo conducir de manera eficiente la adaptación. Sensores pioneros basados en las características del flujo en general, adolecen de una falta de fiabilidad, por lo que en la última década se han realizado grandes esfuerzos en el desarrollo numérico de sensores basados en el error, como por ejemplo los sensores basados en el adjunto. A pesar de ser muy eficientes en la adaptación de mallas para un determinado funcional, este último método resulta muy costoso, pues requiere resolver un doble conjunto de ecuaciones: la solución y su adjunta. Por tanto, es deseable desarrollar un método numérico de estimación de error más asequible. El presente trabajo tiene como objetivo estimar el error local de truncación, que aparece cuando se discretiza una ecuación en derivadas parciales. Estos son los términos de orden superior olvidados en la construcción del esquema numérico. El error de truncación proporciona una información muy útil sobre la solución: es una medida muy fiable de la calidad de la malla, obteniendo información que permite llevar a cabo un procedimiento de adaptación de malla. Está fuertemente relacionado al modelo matemático fluido, de modo que una estimación precisa garantiza la idoneidad de dicho modelo en un campo fluido, lo que puede ser útil en el contexto de modelado zonal. Por último, permite mejorar la precisión de la solución resolviendo un nuevo sistema donde el error local actúa como término fuente (_ -extrapolación). El presenta trabajo se organiza de la siguiente manera: Cap. 1 contiene una breve reseña de las técnicas de adaptación de malla, así como de los métodos de predicción de los errores numéricos. En la primera sección, Sec. 1.1, se examinan las estrategias básicas de refinamiento y se presenta la principal contribución a la adaptación de malla estructurada y no estructurada. Sec 1.2 introduce las definiciones de los errores encontrados en la resolución de problemas de Dinámica Computacional de Fluidos y se examinan los enfoques más comunes para predecirlos. Cap. 2 está dedicado a la formulación matemática de la estimación del error de truncación en el contexto de la metodología de Volúmenes Finitos, así como a un procedimiento de verificación completo. Se estudian varias características que influyen en su estimación: la influencia de la falta de uniformidad de la malla, el efecto de las no linealidades del modelo matemático, diferentes condiciones de contorno y soluciones numéricas no convergidas. Esta parte de verificación ha sido presentada y aceptada para su publicación en el Journal of Computational Physics. Cap. 3 presenta un algoritmo de adaptación de malla basado en la estimación del error de truncación y compara los resultados con sensores de featured-based y adjointbased (en colaboración con Jorge Ponsín del INTA). Se consideran casos en dos y tres dimensiones, relevantes para la validación en la industria aeronáutica. Este trabajo ha sido presentado y aceptado en el AIAA Journal. También se incluye una extensión de estos métodos a las ecuaciones RANS (Reynolds Average Navier- Stokes), en donde adaptación de malla basada en _ y _ -extrapolación son aplicados a perfiles con viscosidad de alas. Este último trabajo se ha presentado en los Actas de la Institución de Ingenieros Mecánicos, Parte G: Journal of Aerospace Engineering. Palabras clave: adaptación de malla, predicción del error numérico, volúmenes finitos
Resumo:
Las pilas de los puentes son elementos habitualmente verticales que, generalmente, se encuentran sometidos a un estado de flexión compuesta. Su altura significativa en muchas ocasiones y la gran resistencia de los materiales constituyentes de estos elementos – hormigón y acero – hace que se encuentren pilas de cierta esbeltez en la que los problemas de inestabilidad asociados al cálculo en segundo orden debido a la no linealidad geométrica deben ser considerados. Además, la mayoría de las pilas de nuestros puentes y viaductos están hechas de hormigón armado por lo que se debe considerar la fisuración del hormigón en las zonas en que esté traccionado. Es decir, el estudio del pandeo de pilas esbeltas de puentes requiere también la consideración de un cálculo en segundo orden mecánico, y no solo geométrico. Por otra parte, una pila de un viaducto no es un elemento que pueda considerarse como aislado; al contrario, su conexión con el tablero hace que aparezca una interacción entre la propia pila y aquél que, en cierta medida, supone una cierta coacción al movimiento de la propia cabeza de pila. Esto hace que el estudio de la inestabilidad de una pila esbelta de un puente no puede ser resuelto con la “teoría del pandeo de la pieza aislada”. Se plantea, entonces, la cuestión de intentar definir un procedimiento que permita abordar el problema complicado del pandeo de pilas esbeltas de puentes pero empleando herramientas de cálculo no tan complejas como las que resuelven “el pandeo global de una estructura multibarra, teniendo en cuenta todas las no linealidades, incluidas las de las coacciones”. Es decir, se trata de encontrar un procedimiento, que resulta ser iterativo, que resuelva el problema planteado de forma aproximada, pero suficientemente ajustada al resultado real, pero empleando programas “convencionales” de cálculo que sean capaces de : - por una parte, en la estructura completa: o calcular en régimen elástico lineal una estructura plana o espacial multibarra compleja; - por otra, en un modelo de una sola barra aislada: o considerar las no linealidades geométricas y mecánicas a nivel tensodeformacional, o considerar la no linealidad producida por la fisuración del hormigón, o considerar una coacción “elástica” en el extremo de la pieza. El objeto de este trabajo es precisamente la definición de ese procedimiento iterativo aproximado, la justificación de su validez, mediante su aplicación a diversos casos paramétricos, y la presentación de sus condicionantes y limitaciones. Además, para conseguir estos objetivos se han elaborado unos ábacos de nueva creación que permiten estimar la reducción de rigidez que supone la fisuración del hormigón en secciones huecas monocajón de hormigón armado. También se han creado unos novedosos diagramas de interacción axil-flector válidos para este tipo de secciones en flexión biaxial. Por último, hay que reseñar que otro de los objetivos de este trabajo – que, además, le da título - era cuantificar el valor de la coacción que existe en la cabeza de una pila debido a que el tablero transmite las cargas de una pila al resto de los integrantes de la subestructura y ésta, por tanto, colabora a reducir los movimientos de la cabeza de pila en cuestión. Es decir, la cabeza de una pila no está exenta lo cual mejora su comportamiento frente al pandeo. El régimen de trabajo de esta coacción es claramente no lineal, ya que la rigidez de las pilas depende de su grado de fisuración. Además, también influye cómo las afecta la no linealidad geométrica que, para la misma carga, aumenta la flexión de segundo orden de cada pila. En este documento se define cuánto vale esta coacción, cómo hay que calcularla y se comprueba su ajuste a los resultados obtenidos en el l modelo no lineal completo. The piers of the bridges are vertical elements where axial loads and bending moments are to be considered. They are often high and also the strength of the materials they are made of (concrete and steel) is also high. This means that slender piers are very common and, so, the instabilities produced by the second order effects due to the geometrical non linear effects are to be considered. In addition to this, the piers are usually made of reinforced concrete and, so, the effects of the cracking of the concrete should also be evaluated. That is, the analysis of the instabilities of te piers of a bridge should consider both the mechanical and the geometrical non linearities. Additionally, the pier of a bridge is not a single element, but just the opposite; the connection of the pier to the deck of the bridge means that the movements of the top of the pier are reduced compared to the situation of having a free end at the top of the pier. The connection between the pier and the deck is the reason why the instability of the pier cannot be analysed using “the buckling of a compressed single element method”. So, the question of defining an approximate method for analysing the buckling of the slender piers of a bridge but using a software less complex than what it is needed for analysing the “ global buckling of a multibeam structure considering all t”, is arisen. Then, the goal should be trying to find a procedure for analysing the said complex problem of the buckling of the slender piers of a bridge using a simplified method. This method could be an iterative (step by step) procedure, being accurate enough, using “normal” software having the following capabilities: - Related to the calculation of the global structure o Ability for calculating a multibesam strucutre using elastic analysis. - Related to the calculation of a single beam strcuture:: o Ability for taking into account the geometrical and mechanical () non linearities o Ability for taking into account the cracking of the concrete. o Ability for using partial stiff constraints (elastic springs) at the end of the elements One of the objectives of this document is just defining this simplified methodology, justifying the accuracy of the proposed procedure by using it on some different bridges and presenting the exclusions and limitations of the propose method. In addition to this, some new charts have been created for calculating the reduction of the stiffness of hollow cross sections made of reinforced concrete. Also, new charts for calculating the reinforcing of hollow cross sections under biaxial bending moments are also included in the document. Finally, it is to be said that another aim of the document – as it is stated on the title on the document – is defining the value of the constraint on the top of the pier because of the connection of the pier to the deck .. and to the other piers. That is, the top of the pier is not a free end of a beam and so the buckling resistance of the pier is significantly improved. This constraint is a non-elastic constraint because the stiffness of each pier depends on the level of cracking. Additionally, the geometrical non linearity is to be considered as there is an amplification of the bending moments due to the increasing of the movements of the top of the pier. This document is defining how this constraints is to be calculated; also the accuracy of the calculations is evaluated comparing the final results with the results of the complete non linear calculations
Resumo:
The bithorax complex (BX-C) of Drosophila, one of two complexes that act as master regulators of the body plan of the fly, has now been entirely sequenced and comprises approximately 315,000 bp, only 1.4% of which codes for protein. Analysis of this sequence reveals significantly overrepresented DNA motifs of unknown, as well as known, functions in the non-protein-coding portion of the sequence. The following types of motifs in that portion are analyzed: (i) concatamers of mono-, di-, and trinucleotides; (ii) tightly clustered hexanucleotides (spaced < or = 5 bases apart); (iii) direct and reverse repeats longer than 20 bp; and (iv) a number of motifs known from biochemical studies to play a role in the regulation of the BX-C. The hexanucleotide AGATAC is remarkably overrepresented and is surmised to play a role in chromosome pairing. The positions of sites of highly overrepresented motifs are plotted for those that occur at more than five sites in the sequence, when < 0.5 case is expected. Expected values are based on a third-order Markov chain, which is the optimal order for representing the BXCALL sequence.
Resumo:
A phantom that can be used for mapping geometric distortion in magnetic resonance imaging (MRI) is described. This phantom provides an array of densely distributed control points in three-dimensional (3D) space. These points form the basis of a comprehensive measurement method to correct for geometric distortion in MR images arising principally from gradient field non-linearity and magnet field inhomogeneity. The phantom was designed based on the concept that a point in space can be defined using three orthogonal planes. This novel design approach allows for as many control points as desired. Employing this novel design, a highly accurate method has been developed that enables the positions of the control points to be measured to sub-voxel accuracy. The phantom described in this paper was constructed to fit into a body coil of a MRI scanner, (external dimensions of the phantom were: 310 mm x 310 mm x 310 mm), and it contained 10,830 control points. With this phantom, the mean errors in the measured coordinates of the control points were on the order of 0.1 mm or less, which were less than one tenth of the voxel's dimensions of the phantom image. The calculated three-dimensional distortion map, i.e., the differences between the image positions and true positions of the control points, can then be used to compensate for geometric distortion for a full image restoration. It is anticipated that this novel method will have an impact on the applicability of MRI in both clinical and research settings. especially in areas where geometric accuracy is highly required, such as in MR neuro-imaging. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
The bispectrum and third-order moment can be viewed as equivalent tools for testing for the presence of nonlinearity in stationary time series. This is because the bispectrum is the Fourier transform of the third-order moment. An advantage of the bispectrum is that its estimator comprises terms that are asymptotically independent at distinct bifrequencies under the null hypothesis of linearity. An advantage of the third-order moment is that its values in any subset of joint lags can be used in the test, whereas when using the bispectrum the entire (or truncated) third-order moment is required to construct the Fourier transform. In this paper, we propose a test for nonlinearity based upon the estimated third-order moment. We use the phase scrambling bootstrap method to give a nonparametric estimate of the variance of our test statistic under the null hypothesis. Using a simulation study, we demonstrate that the test obtains its target significance level, with large power, when compared to an existing standard parametric test that uses the bispectrum. Further we show how the proposed test can be used to identify the source of nonlinearity due to interactions at specific frequencies. We also investigate implications for heuristic diagnosis of nonstationarity.
Resumo:
Are the learning procedures of genetic algorithms (GAs) able to generate optimal architectures for artificial neural networks (ANNs) in high frequency data? In this experimental study,GAs are used to identify the best architecture for ANNs. Additional learning is undertaken by the ANNs to forecast daily excess stock returns. No ANN architectures were able to outperform a random walk,despite the finding of non-linearity in the excess returns. This failure is attributed to the absence of suitable ANN structures and further implies that researchers need to be cautious when making inferences from ANN results that use high frequency data.
Resumo:
A method for inscribing fiber bragg gratings (FBG) using direct, point-by-point writing by an infrared femtosecond laser was described. The method requires neither phase-masks nor photosensitized fibers and hence offers remarkable technology flexibility. It requires a very short inscription time of less than 60 s per grating. Gratings of first to third order were produced in non-photosensitized, standard telecommunication fiber (SMF) and dispersion shifted fiber (DSF). The gratings produced in this method showed low insertion loss, narrow linewidth and strong, fundamental or high-order resonance.
Resumo:
We review the recent progress of information theory in optical communications, and describe the current experimental results and associated advances in various individual technologies which increase the information capacity. We confirm the widely held belief that the reported capacities are approaching the fundamental limits imposed by signal-to-noise ratio and the distributed non-linearity of conventional optical fibres, resulting in the reduction in the growth rate of communication capacity. We also discuss the techniques which are promising to increase and/or approach the information capacity limit.
Resumo:
The kinetic parameters of the pyrolysis of miscanthus and its acid hydrolysis residue (AHR) were determined using thermogravimetric analysis (TGA). The AHR was produced at the University of Limerick by treating miscanthus with 5 wt.% sulphuric acid at 175 °C as representative of a lignocellulosic acid hydrolysis product. For the TGA experiments, 3 to 6 g of sample, milled and sieved to a particle size below 250 μm, were placed in the TGA ceramic crucible. The experiments were carried out under non-isothermal conditions heating the samples from 50 to 900 °C at heating rates of 2.5, 5, 10, 17 and 25 °C/min. The activation energy (EA) of the decomposition process was determined from the TGA data by differential analysis (Friedman) and three isoconversional methods of integral analysis (Kissinger–Akahira–Sunose, Ozawa–Flynn–Wall, Vyazovkin). The activation energy ranged from 129 to 156 kJ/mol for miscanthus and from 200 to 376 kJ/mol for AHR increasing with increasing conversion. The reaction model was selected using the non-linear least squares method and the pre-exponential factor was calculated from the Arrhenius approximation. The results showed that the best fitting reaction model was the third order reaction for both feedstocks. The pre-exponential factor was in the range of 5.6 × 1010 to 3.9 × 10+ 13 min− 1 for miscanthus and 2.1 × 1016 to 7.7 × 1025 min− 1 for AHR.