881 resultados para therapeutic target
Resumo:
BackgroundRas-related nuclear protein (Ran) is required for cancer cell survival in vitro and human cancer progression, but the molecular mechanisms are largely unknown.MethodsWe investigated the effect of the v-myc myelocytomatosis viral oncogene homolog (Myc) on Ran expression by Western blot, chromatin immunoprecipitation, and luciferase reporter assays and the effects of Myc and Ran expression in cancer cells by soft-agar, cell adhesion, and invasion assays. The correlation between Myc and Ran and the association with patient survival were investigated in 14 independent patient cohorts (n = 2430) and analyzed with Spearman's rank correlation and Kaplan-Meier plots coupled with Wilcoxon-Gehan tests, respectively. All statistical tests were two-sided.ResultsMyc binds to the upstream sequence of Ran and transactivates Ran promoter activity. Overexpression of Myc upregulates Ran expression, whereas knockdown of Myc downregulates Ran expression. Myc or Ran overexpression in breast cancer cells is associated with cancer progression and metastasis. Knockdown of Ran reverses the effect induced by Myc overexpression in breast cancer cells. In clinical data, a positive association between Myc and Ran expression was revealed in 288 breast cancer and 102 lung cancer specimens. Moreover, Ran expression levels differentiate better or poorer survival in Myc overexpressing breast (?(2) = 24.1; relative risk [RR] = 9.1, 95% confidence interval [CI] = 3.3 to 24.7, P <.001) and lung (?(2) = 6.04; RR = 2.8, 95% CI = 1.2 to 6.3; P = .01) cancer cohorts.ConclusionsOur results suggest that Ran is required for and is a potential therapeutic target of Myc-driven cancer progression in both breast and lung cancers.
Resumo:
The Hippo pathway restricts the activity of transcriptional coactivators TAZ (WWTR1) and YAP. TAZ and YAP are reported to be overexpressed in various cancers, however, their prognostic significance in colorectal cancers remains unstudied. The expression levels of TAZ and YAP, and their downstream transcriptional targets, AXL and CTGF, were extracted from two independent colon cancer patient datasets available in the Gene Expression Omnibus database, totaling 522 patients. We found that mRNA expressions of both TAZ and YAP were positively correlated with those of AXL and CTGF (p<0.05). High level mRNA expression of TAZ, AXL or CTGF significantly correlated with shorter survival. Importantly, patients co-overexpressing all 3 genes had a significantly shorter survival time, and combinatorial expression of these 3 genes was an independent predictor for survival. The downstream target genes for TAZ-AXL-CTGF overexpression were identified by Java application MyStats. Interestingly, genes that are associated with colon cancer progression (ANTXR1, EFEMP2, SULF1, TAGLN, VCAN, ZEB1 and ZEB2) were upregulated in patients co-overexpressing TAZ-AXL-CTGF. This TAZ-AXL-CTGF gene expression signature (GES) was then applied to Connectivity Map to identify small molecules that could potentially be utilized to reverse this GES. Of the top 20 small molecules identified by connectivity map, amiloride (a potassium sparing diuretic,) and tretinoin (all-trans retinoic acid) have shown therapeutic promise in inhibition of colon cancer cell growth. Using MyStats, we found that low level expression of either ANO1 or SQLE were associated with a better prognosis in patients who co-overexpressed TAZ-AXL-CTGF, and that ANO1 was an independent predictor of survival together with TAZ-AXL-CTGF. Finally, we confirmed that TAZ regulates Axl, and plays an important role in clonogenicity and non-adherent growth in vitro and tumor formation in vivo. These data suggest that TAZ could be a therapeutic target for the treatment of colon cancer.
Resumo:
X-box binding protein 1 (XBP1) is a key signal transducer in endoplasmic reticulum stress response, and its potential role in the atherosclerosis development is unknown. This study aims to explore the impact of XBP1 on maintaining endothelial integrity related to atherosclerosis and to delineate the underlying mechanism. We found that XBP1 was highly expressed at branch points and areas of atherosclerotic lesions in the arteries of ApoE(-/-) mice, which was related to the severity of lesion development. In vitro study using human umbilical vein endothelial cells (HUVECs) indicated that disturbed flow increased the activation of XBP1 expression and splicing. Overexpression of spliced XBP1 induced apoptosis of HUVECs and endothelial loss from blood vessels during ex vivo cultures because of caspase activation and down-regulation of VE-cadherin resulting from transcriptional suppression and matrix metalloproteinase-mediated degradation. Reconstitution of VE-cadherin by Ad-VEcad significantly increased Ad-XBP1s-infected HUVEC survival. Importantly, Ad-XBP1s gene transfer to the vessel wall of ApoE(-/-) mice resulted in development of atherosclerotic lesions after aorta isografting. These results indicate that XBP1 plays an important role in maintaining endothelial integrity and atherosclerosis development, which provides a potential therapeutic target to intervene in atherosclerosis.
Resumo:
FFA2 is a G protein-coupled receptor that responds to short chain fatty acids (SCFAs) and has generated interest as a therapeutic target for metabolic and inflammatory conditions. However, definition of its functions has been slowed by a dearth of selective ligands that can distinguish it from the closely related FFA3. At present, the only selective ligands described for FFA2 suffer from either poor potency, altered signaling due to allosteric modes of action, or a lack of function at non-human orthologs of the receptor. To address the need for novel selective ligands, we synthesized two compounds potentially having FFA2 activity and examined the molecular basis of their function. These compounds were confirmed to be potent and selective FFA2 agonists that interact with the orthosteric binding site. A combination of ligand structure-activity relationship, pharmacological analysis, homology modeling, species ortholog comparisons and mutagenesis studies were then employed to define the molecular basis of selectivity and function of these ligands. From this, we identified key residues within both extracellular loop 2 (ECL2) and the transmembrane domain (TM) regions of FFA2 critical for ligand function. One of these ligands was active with reasonable potency at rodent orthologs of FFA2 and demonstrated the role of FFA2 in the regulation of lipolysis in murine 3T3-L1 adipocytes. Together, these findings describe the first potent and selective FFA2 orthosteric agonists and demonstrate key aspects of ligand interaction within the orthosteric binding site of FFA2 that will be invaluable in future ligand development at this receptor.
Resumo:
Recent murine studies have demonstrated that tumour-associated macrophages in the tumour microenvironment are a key source of the pro-tumourigenic cysteine protease, cathepsin S. We now show in a syngeneic colorectal carcinoma murine model that both tumour and tumour-associated cells contribute cathepsin S to promote neovascularisation and tumour growth. Cathepsin S depleted and control colorectal MC38 tumour cell lines were propagated in both wild type C57Bl/6 and cathepsin S null mice to provide stratified depletion of the protease from either the tumour, tumour-associated host cells, or both. Parallel analysis of these conditions showed that deletion of cathepsin S inhibited tumour growth and development, and revealed a clear contribution of both tumour and tumour-associated cell derived cathepsin S. The most significant impact on tumour development was obtained when the protease was depleted from both sources. Further characterisation revealed that the loss of cathepsin S led to impaired tumour vascularisation, which was complemented by a reduction in proliferation and increased apoptosis, consistent with reduced tumour growth. Analysis of cell types showed that in addition to the tumour cells, tumour-associated macrophages and endothelial cells can produce cathepsin S within the microenvironment. Taken together, these findings clearly highlight a manner by which tumour-associated cells can positively contribute to developing tumours and highlight cathepsin S as a therapeutic target in cancer.
Resumo:
Asthma is a chronic inflammatory disease characterised by airways remodelling. In mouse models IL-9 and IL-13 have been implicated in airways remodelling including mucus hypersecretion and goblet cell hyperplasia. Their role, especially that of IL-9, has been much less studied in authentic human ex vivo models of the bronchial epithelium from normal and asthmatic children. We assessed the effects of IL-9, IL-13 and an IL-9/IL-13 combination, during differentiation of bronchial epithelial cells from normal (n?=?6) and asthmatic (n?=?8) children. Cultures were analysed for morphological markers and factors associated with altered differentiation (MUC5AC, SPDEF and MMP-7). IL-9, IL-9/IL-13 combination and IL-13 stimulated bronchial epithelial cells from normal children had fewer ciliated cells [14.8% (SD 8.9), p?=?0.048, 12.4 (SD 6.1), p?=?0.016 and 7.3% (SD 6.6), p?=?0.031] respectively compared with unstimulated [(21.4% (SD 9.6)]. IL-9 stimulation had no effect on goblet cell number in either group whereas IL-9/IL-13 combination and IL-13 significantly increased goblet cell number [24.8% (SD 8.8), p?=?0.02), 32.9% (SD 8.6), p?=?0.007] compared with unstimulated normal bronchial cells [(18.6% (SD 6.2)]. All stimulations increased MUC5AC mRNA in bronchial epithelial cells from normal children and increased MUC5AC mucin secretion. MMP-7 localisation was dysregulated in normal bronchial epithelium stimulated with Th2 cytokines which resembled the unstimulated bronchial epithelium of asthmatic children. All stimulations resulted in a significant reduction in transepithelial electrical resistance values over time suggesting a role in altered tight junction formation. We conclude that IL-9 does not increase goblet cell numbers in bronchial epithelial cell cultures from normal or asthmatic children. IL-9 and IL-13 alone and in combination, reduce ciliated cell numbers and transepithelial electrical resistance during differentiation of normal epithelium, which clinically could inhibit mucociliary clearance and drive an altered repair mechanism. This suggests an alternative role for IL-9 in airways remodelling and reaffirms IL-9 as a potential therapeutic target.© 2013 Parker et al.
Resumo:
Secretory factors that drive cancer progression are attractive immunotherapeutic targets. We used a whole-genome data-mining approach on multiple cohorts of breast tumours annotated for clinical outcomes to discover such factors. We identified Serine protease inhibitor Kazal-type 1 (SPINK1) to be associated with poor survival in estrogen receptor-positive (ER+) cases. Immunohistochemistry showed that SPINK1 was absent in normal breast, present in early and advanced tumours, and its expression correlated with poor survival in ER+ tumours. In ER- cases, the prognostic effect did not reach statistical significance. Forced expression and/or exposure to recombinant SPINK1 induced invasiveness without affecting cell proliferation. However, down-regulation of SPINK1 resulted in cell death. Further, SPINK1 overexpressing cells were resistant to drug-induced apoptosis due to reduced caspase-3 levels and high expression of Bcl2 and phospho-Bcl2 proteins. Intriguingly, these anti-apoptotic effects of SPINK1 were abrogated by mutations of its protease inhibition domain. Thus, SPINK1 affects multiple aggressive properties in breast cancer: survival, invasiveness and chemoresistance. Because SPINK1 effects are abrogated by neutralizing antibodies, we suggest that SPINK1 is a viable potential therapeutic target in breast cancer.
Resumo:
As an essential constituent of the outer membrane of Gram-negative bacteria, lipopolysaccharide contributes significantly to virulence and antibiotic resistance. The lipopolysaccharide biosynthetic pathway therefore serves as a promising therapeutic target for antivirulence drugs and antibiotic adjuvants. Here we report the structural-functional studies of D-glycero-beta-D-manno-heptose 7-phosphate kinase (HldA), an absolutely conserved enzyme in this pathway, from Burkholderia cenocepacia. HldA is structurally similar to members of the PfkB carbohydrate kinase family and appears to catalyze heptose phosphorylation via an in-line mechanism mediated mainly by a conserved aspartate, Asp270. Moreover, we report the structures of HldA in complex with two potent inhibitors in which both inhibitors adopt a folded conformation and occupy the nucleotide-binding sites. Together, these results provide important insight into the mechanism of HldA-catalyzed heptose phosphorylation and necessary information for further development of HldA inhibitors.
Resumo:
FLT3-ITD mutations are prevalent mutations in acute myeloid leukaemia (AML). PRL-3, a metastasis-associated phosphatase, is a downstream target of FLT3-ITD. This study investigates the regulation and function of PRL-3 in leukaemia cell lines and AML patients associated with FLT3-ITD mutations. PRL-3 expression is upregulated by the FLT3-STAT5 signalling pathway in leukaemia cells, leading an activation of AP-1 transcription factors via ERK and JNK pathways. PRL-3-depleted AML cells showed a significant decrease in cell growth. Clinically, high PRL-3 mRNA expression was associated with FLT3-ITD mutations in four independent AML datasets with 1158 patients. Multivariable Cox-regression analysis on our Cohort 1 with 221 patients identified PRL-3 as a novel prognostic marker independent of other clinical parameters. Kaplan-Meier analysis showed high PRL-3 mRNA expression was significantly associated with poorer survival among 491 patients with normal karyotype. Targeting PRL-3 reversed the oncogenic effects in FLT3-ITD AML models in vitro and in vivo. Herein, we suggest that PRL-3 could serve as a prognostic marker to predict poorer survival and as a promising novel therapeutic target for AML patients.
Resumo:
Although Wnt signaling is known to mediate multiple biological and pathological processes, its association with diabetic retinopathy (DR) has not been established. Here we show that retinal levels and nuclear translocation of beta-catenin, a key effector in the canonical Wnt pathway, were increased in humans with DR and in three DR models. Retinal levels of low-density lipoprotein receptor-related proteins 5 and 6, coreceptors of Wnts, were also elevated in the DR models. The high glucose-induced activation of beta-catenin was attenuated by aminoguanidine, suggesting that oxidative stress is a direct cause for the Wnt pathway activation in diabetes. Indeed, Dickkopf homolog 1, a specific inhibitor of the Wnt pathway, ameliorated retinal inflammation, vascular leakage, and retinal neovascularization in the DR models. Dickkopf homolog 1 also blocked the generation of reactive oxygen species induced by high glucose, suggesting that Wnt signaling contributes to the oxidative stress in diabetes. These observations indicate that the Wnt pathway plays a pathogenic role in DR and represents a novel therapeutic target.
Resumo:
BACKGROUND: The airway epithelium is exposed to a range of physical and chemical irritants in the environment that are known to trigger asthma. Transient receptor potential (TRP) cation channels play a central role in sensory responses to noxious physical and chemical stimuli. Recent genetic evidence suggests an involvement of transient receptor potential vanilloid 1 (TRPV1), one member of the vanilloid subfamily of TRP channels, in the pathophysiology of asthma. The functional expression of TRPV1 on airway epithelium has yet to be elucidated.
OBJECTIVE: In this study we examined the molecular, functional, and immunohistochemical expression of TRPV1 in asthmatic and healthy airways.
METHODS: Bronchial biopsy specimens and bronchial brushings were obtained from healthy volunteers (n = 18), patients with mild-to-moderate asthma (n = 24), and patients with refractory asthma (n = 22). Cultured primary bronchial epithelial cells from patients with mild asthma (n = 4), nonasthmatic coughers (n = 4), and healthy subjects (n = 4) were studied to investigate the functional role of TRPV1.
RESULTS: Quantitative immunohistochemistry revealed significantly more TRPV1 expression in asthmatic patients compared with healthy subjects, with the greatest expression in patients with refractory asthma (P = .001). PCR and Western blotting analysis confirmed gene and protein expression of TRPV1 in cultured primary bronchial epithelial cells. Patch-clamp electrophysiology directly confirmed functional TRPV1 expression in all 3 groups. In functional assays the TRPV1 agonist capsaicin induced dose-dependent IL-8 release, which could be blocked by the antagonist capsazepine. Reduction of external pH from 7.4 to 6.4 activated a capsazepine-sensitive outwardly rectifying membrane current.
CONCLUSIONS: Functional TRPV1 channels are present in the human airway epithelium and overexpressed in the airways of patients with refractory asthma. These channels might represent a novel therapeutic target for the treatment of uncontrolled asthma.
Resumo:
Purpose: Despite the use of 5-fluorouracil (5-FU)–based adjuvant treatments, a large proportion of patients with high-risk stage II/III colorectal cancer will relapse. Thus, novel therapeutic strategies are needed for early-stage colorectal cancer. Residual micrometastatic disease from the primary tumor is a major cause of patient relapse.
Experimental Design: To model colorectal cancer tumor cell invasion/metastasis, we have generated invasive (KRASMT/KRASWT/+chr3/p53-null) colorectal cancer cell subpopulations. Receptor tyrosine kinase (RTK) screens were used to identify novel proteins that underpin the migratory/invasive phenotype. Migration/invasion was assessed using the XCELLigence system. Tumors from patients with early-stage colorectal cancer (N = 336) were examined for AXL expression.
Results: Invasive colorectal cancer cell subpopulations showed a transition from an epithelial-to-mesenchymal like phenotype with significant increases in migration, invasion, colony-forming ability, and an attenuation of EGF receptor (EGFR)/HER2 autocrine signaling. RTK arrays showed significant increases in AXL levels in all invasive sublines. Importantly, 5-FU treatment resulted in significantly increased migration and invasion, and targeting AXL using pharmacologic inhibition or RNA interference (RNAi) approaches suppressed basal and 5-FU–induced migration and invasion. Significantly, high AXL mRNA and protein expression were found to be associated with poor overall survival in early-stage colorectal cancer tissues.
Conclusions: We have identified AXL as a poor prognostic marker and important mediator of cell migration/invasiveness in colorectal cancer. These findings provide support for the further investigation of AXL as a novel prognostic biomarker and therapeutic target in colorectal cancer, in particular in the adjuvant disease in which EGFR/VEGF–targeted therapies have failed.
Resumo:
The ubiquitin proteasome system (UPS) plays a central role in cellular protein homeostasis through the targeted destruction of damaged/misfolded proteins and regulatory proteins that control critical cellular functions. The UPS comprises a sequential series of enzymatic activities to covalently attach ubiquitin to proteins to target them for degradation through the proteasome. Aberrancies within this system have been associated with transformation and tumourigenesis and thus, the UPS represents an attractive target for the development of anti-cancer therapies. The use of the first-in-class proteasome inhibitor, bortezomib, in the treatment of Plasma Cell Myeloma and Mantle Cell Lymphoma has validated the UPS as a therapeutic target. Following on its success, efforts are focused on the development of second-generation proteasome inhibitors and small molecule inhibitors of other components of the UPS. This review will provide an overview of the UPS and discuss current and novel therapies targeting the UPS.
Resumo:
Given the relatively high prevalence of age-related macular degeneration (AMD) and the increased incidence of AMD as populations age, the results of trials of novel treatments are awaited with much anticipation. The complement cascade describes a series of proteolytic reactions occurring throughout the body that generate proteins with a variety of roles including the initiation and promotion of immune reactions against foreign materials or micro-organisms. The complement cascade is normally tightly regulated, but much evidence implicates complement overactivity in AMD and so it is a logical therapeutic target in the treatment of AMD.
Resumo:
Purpose: Current understanding of the genetic risk factors for age-related macular degeneration (AMD) is not sufficiently predictive of the clinical course. The VEGF pathway is a key therapeutic target for treatment of neovascular AMD; however, risk attributable to genetic variation within pathway genes is unclear. We sought to identify single nucleotide polymorphisms (SNPs) associated with AMD within the VEGF pathway.
Methods: Using a tagSNP, direct sequencing and meta-analysis approach within four ethnically diverse cohorts, we identified genetic risk present in FLT1, though not within other VEGF pathway genes KDR, VEGFA, or VASH1. We used ChIP and ELISA in functional analysis.
Results: The FLT1 SNPs rs9943922, rs9508034, rs2281827, rs7324510, and rs9513115 were significantly associated with increased risk of neovascular AMD. Each association was more significant after meta-analysis than in any one of the four cohorts. All associations were novel, within noncoding regions of FLT1 that do not tag for coding variants in linkage disequilibrium. Analysis of soluble FLT1 demonstrated higher expression in unaffected individuals homozygous for the FLT1 risk alleles rs9943922 (P = 0.0086) and rs7324510 (P = 0.0057). In silico analysis suggests that these variants change predicted splice sites and RNA secondary structure, and have been identified in other neovascular pathologies. These data were supported further by murine chromatin immunoprecipitation demonstrating that FLT1 is a target of Nr2e3, a nuclear receptor gene implicated in regulating an AMD pathway.
Conclusions: Although exact variant functions are not known, these data demonstrate relevancy across ethnically diverse genetic backgrounds within our study and, therefore, hold potential for global efficacy.