969 resultados para therapeutic target
Resumo:
A limited number of receptor tyrosine kinases (e.g., ErbB and fibroblast growth factor receptor families) have been genetically linked to breast cancer development. Here, we investigated the contribution of the Ret receptor tyrosine kinase to breast tumor biology. Ret was expressed in primary breast tumors and cell lines. In estrogen receptor (ER)alpha-positive MCF7 and T47D lines, the ligand (glial-derived neurotrophic factor) activated signaling pathways and increased anchorage-independent proliferation in a Ret-dependent manner, showing that Ret signaling is functional in breast tumor cells. Ret expression was induced by estrogens and Ret signaling enhanced estrogen-driven proliferation, highlighting the functional interaction of Ret and ER pathways. Furthermore, Ret was detected in primary cancers, and there were higher Ret levels in ERalpha-positive tumors. In summary, we showed that Ret is a novel proliferative pathway interacting with ER signaling in vitro. Expression of Ret in primary breast tumors suggests that Ret might be a novel therapeutic target in breast cancer.
Resumo:
BACKGROUND: Peroxisome proliferator activated receptors (PPARs) are nuclear hormone receptors involved in genetic control of many cellular processes. PPAR and PPAR have been implicated in colonic malignancy. Here we provide three lines of evidence suggesting an inhibitory role for PPAR in colorectal cancer development. METHODS: Levels of PPAR mRNA and protein in human colorectal cancers were compared with matched non-malignant mucosa using RNAse protection and western blotting. APC(Min)/+ mice were randomised to receive the PPAR activator methylclofenapate 25 mg/kg or vehicle for up to 16 weeks, and small and large intestinal polyps were quantified by image analysis. The effect of methylclofenapate on serum stimulated mitogenesis (thymidine incorporation), linear cell growth, and annexin V and propidium iodide staining were assessed in human colonic epithelial cells. RESULTS: PPAR (mRNA and protein) expression levels were significantly depressed in colorectal cancer compared with matched non-malignant tissue. Methylclofenapate reduced polyp area in the small intestine from 18.7 mm(2) (median (interquartile range 11.1, 26.8)) to 9.90 (4.88, 13.21) mm(2) (p=0.003) and in the colon from 9.15 (6.31, 10.5) mm(2) to 3.71 (2.71, 5.99) mm(2) (p=0.009). Methylclofenapate significantly reduced thymidine incorporation and linear cell growth with no effect on annexin V or propidium iodide staining. CONCLUSIONS: PPAR may inhibit colorectal tumour progression, possibly via inhibition of proliferation, and may be an important therapeutic target.
Resumo:
Although tumor heterogeneity is widely accepted, the existence of cancer stem cells (CSCs) and their proposed role in tumor maintenance has always been challenged and remains a matter of debate. Recently, a path-breaking chapter was added to this saga when three independent groups reported the in vivo existence of CSCs in brain, skin and intestinal tumors using lineage-tracing and thus strengthens the CSC concept; even though certain fundamental caveats are always associated with lineage-tracing approach. In principle, the CSC hypothesis proposes that similar to normal stem cells, CSCs maintain self renewal and multilineage differentiation property and are found at the central echelon of cellular hierarchy present within tumors. However, these cells differ from their normal counterpart by maintaining their malignant potential, alteration of genomic integrity, epigenetic identity and the expression of specific surface protein profiles. As CSCs are highly resistant to chemotherapeutics, they are thought to be a crucial factor involved in tumor relapse and superficially appear as the ultimate therapeutic target. However, even that is not the end; further complication is attributed by reports of bidirectional regeneration mechanism for CSCs, one from their self-renewal capability and another from the recently proposed concept of dynamic equilibrium between CSCs and non-CSCs via their interconversion. This phenomenon has currently added a new layer of complexity in understanding the biology of tumor heterogeneity. In-spite of its associated controversies, this area has rapidly emerged as the center of attention for researchers and clinicians, because of the conceptual framework it provides towards devising new therapies.
Resumo:
The peroxisome proliferator-activated receptor (PPAR)-β/δ has emerged as a promising therapeutic target for treating dyslipidemia, including beneficial effects on HDL cholesterol (HDL-C). In the current study, we determined the effects of the PPAR-β/δ agonist GW0742 on HDL composition and the expression of liver HDL-related genes in mice and cultured human cells. The experiments were carried out in C57BL/6 wild-type, LDL receptor (LDLR)-deficient mice and PPAR-β/δ-deficient mice treated with GW0742 (10mg/kg/day) or a vehicle solution for 14 days. GW0742 upregulated liver phospholipid transfer protein (Pltp) gene expression and increased serum PLTP activity in mice. When given to wild-type mice, GW0742 significantly increased serum HDL-C and HDL phospholipids; GW0742 also raised serum potential to generate preβ-HDL formation. The GW0742-mediated effects on liver Pltp expression and serum enzyme activity were completely abolished in PPAR-β/δ-deficient mice. GW0742 also stimulated PLTP mRNA expression in mouse J774 macrophages, differentiated human THP-1 macrophages and human hepatoma Huh7. Collectively, our findings demonstrate a common transcriptional upregulation by GW0742-activated PPAR-β/δ of Pltp expression in cultured cells and in mouse liver resulting in enhanced serum PLTP activity. Our results also indicate that PPAR-β/δ activation may modulate PLTP-mediated preβ-HDL formation and macrophage cholesterol efflux.
Resumo:
Peroxisome proliferator-activated receptors (PPARs) are ligand activated transcription factors belonging to the nuclear hormone receptor superfamily. PPARγ is involved in many different activities in the epidermis, such as keratinocyte differentiation, permeability barrier recovery, dermal wound closure, sebaceous gland formation, sebocyte differentiation, and melanogenesis. Preclinical studies with PPARγ ligands on various skin diseases have been performed and they could represent a new strategy in the treatment of scarring alopecia. PPARγ deserves further studies as therapeutic target, likely not with the current drugs, but with future new classes of safer molecules and in combined therapies.
Resumo:
We review the functions of peroxisome proliferator activated receptor (PPAR) beta/delta in skin wound healing and cancer. In particular, we highlight the roles of PPAR beta/delta in inhibiting keratinocyte apoptosis at wound edges via activation of the PI3K/PKB alpha/Akt1 pathway and its role during re-epithelialization in regulating keratinocyte adhesion and migration. In fibroblasts, PPAR beta/delta controls IL-1 signalling and thereby contributes to the homeostatic control of keratinocyte proliferation. We discuss its therapeutic potential for treating diabetic wounds and inflammatory skin diseases such as psoriasis and acne vulgaris. PPAR beta/delta is classified as a tumour growth modifier; it is activated by chronic low-grade inflammation, which promotes the production of lipids that, in turn, enhance PPAR beta/delta transcription activity. Our earlier,work unveiled a cascade of events triggered by PPAR beta/delta that involve the oncogene Src, which promotes ultraviolet-induced skin cancer in mice via enhanced EGFR/Erk1/2 signalling and the expression of epithelial-to-mesenchymal transition (EMT) markers. Interestingly, PPAR beta/delta expression is correlated with the expression of SRC and EMT markers in human skin squamous cell carcinoma. Furthermore, there is a positive interaction between PPAR beta/delta, SRC, and TGF beta 1 at the transcriptional level in various human epithelial cancers. Taken together, these observations suggest the need for evaluating PPAR beta/delta modulators that attenuate or increase its activity, depending on the therapeutic target.
Resumo:
Carcinoma-associated fibroblasts were reported to promote colorectal cancer (CRC) invasion by secreting motility factors and extracellular matrix processing enzymes. Less is known whether fibroblasts may induce CRC cancer cell motility by contact-dependent mechanisms. To address this question we characterized the interaction between fibroblasts and SW620 and HT29 colorectal cancer cells in 2D and 3D co-culture models in vitro. Here we show that fibroblasts induce contact-dependent cancer cell elongation, motility and invasiveness independently of deposited matrix or secreted factors. These effects depend on fibroblast cell surface-associated fibroblast growth factor (FGF) -2. Inhibition of FGF-2 or FGF receptors (FGFRs) signaling abolishes these effects. FGFRs activate SRC in cancer cells and inhibition or silencing of SRC in cancer cells, but not in fibroblasts, prevents fibroblasts-mediated effects. Using an RGD-based integrin antagonist and function-blocking antibodies we demonstrate that cancer cell adhesion to fibroblasts requires integrin αvβ5. Taken together, these results demonstrate that fibroblasts induce cell-contact-dependent colorectal cancer cell migration and invasion under 2D and 3D conditions in vitro through fibroblast cell surface-associated FGF-2, FGF receptor-mediated SRC activation and αvβ5 integrin-dependent cancer cell adhesion to fibroblasts. The FGF-2-FGFRs-SRC-αvβ5 integrin loop might be explored as candidate therapeutic target to block colorectal cancer invasion.
Resumo:
Androgen receptor (AR) is a major therapeutic target that plays pivotal roles in prostate cancer (PCa) and androgen insensitivity syndromes. We previously proposed that compounds recruited to ligand-binding domain (LBD) surfaces could regulate AR activity in hormone-refractory PCa and discovered several surface modulators of AR function. Surprisingly, the most effective compounds bound preferentially to a surface of unknown function [binding function 3 (BF-3)] instead of the coactivator-binding site [activation function 2 (AF-2)]. Different BF-3 mutations have been identified in PCa or androgen insensitivity syndrome patients, and they can strongly affect AR activity. Further, comparison of AR x-ray structures with and without bound ligands at BF-3 and AF-2 showed structural coupling between both pockets. Here, we combine experimental evidence and molecular dynamic simulations to investigate whether BF-3 mutations affect AR LBD function and dynamics possibly via allosteric conversation between surface sites. Our data indicate that AF-2 conformation is indeed closely coupled to BF-3 and provide mechanistic proof of their structural interconnection. BF-3 mutations may function as allosteric elicitors, probably shifting the AR LBD conformational ensemble toward conformations that alter AF-2 propensity to reorganize into subpockets that accommodate N-terminal domain and coactivator peptides. The induced conformation may result in either increased or decreased AR activity. Activating BF-3 mutations also favor the formation of another pocket (BF-4) in the vicinity of AF-2 and BF-3, which we also previously identified as a hot spot for a small compound. We discuss the possibility that BF-3 may be a protein-docking site that binds to the N-terminal domain and corepressors. AR surface sites are attractive pharmacological targets to develop allosteric modulators that might be alternative lead compounds for drug design.
Resumo:
Notch is a membrane inserted protein activated by the membrane-inserted γ-secretase proteolytic complex. The Notch pathway is a potential therapeutic target for the treatment of renal diseases but also controls the function of other cells, requiring cell-targeting of Notch antagonists. Toward selective targeting, we have developed the γ-secretase inhibitor-based prodrugs 13a and 15a as substrates for γ-glutamyltranspeptidase (γ-GT) and/or γ-glutamylcyclotransferase (γ-GCT) as well as aminopeptidase A (APA), which are overexpressed in renal diseases, and have evaluated them in experimental in vitro and in vivo models. In nondiseased mice, the cleavage product from Ac-γ-Glu-γ-secretase inhibitor prodrug 13a (γ-GT-targeting and γ-GCT-targeting) but not from Ac-α-Glu-γ-secretase inhibitor prodrug 15a (APA-targeting) accumulated in kidneys when compared to blood and liver. Potential nephroprotective effects of the γ-secretase inhibitor targeted prodrugs were investigated in vivo in a mouse model of acute kidney injury, demonstrating that the expression of Notch1 and cleaved Notch1 could be selectively down-regulated upon treatment with the Ac-γ-Glu-γ-secretase-inhibitor 13a.
Resumo:
Mutations of the Wiskott-Aldrich syndrome gene (WAS) are responsible for Wiskott-Aldrich syndrome (WAS), a disease characterized by thrombocytopenia, eczema, immunodeficiency, and autoimmunity. Mice with conditional deficiency of Was in B lymphocytes (B/WcKO) have revealed a critical role for WAS protein (WASP) expression in B lymphocytes in the maintenance of immune homeostasis. Neural WASP (N-WASP) is a broadly expressed homolog of WASP, and regulates B-cell signaling by modulating B-cell receptor (BCR) clustering and internalization. We have generated a double conditional mouse lacking both WASP and N-WASP selectively in B lymphocytes (B/DcKO). Compared with B/WcKO mice, B/DcKO mice showed defective B-lymphocyte proliferation and impaired antibody responses to T-cell-dependent antigens, associated with decreased autoantibody production and lack of autoimmune kidney disease. These results demonstrate that N-WASP expression in B lymphocytes is required for the development of autoimmunity of WAS and may represent a novel therapeutic target in WAS.
Resumo:
Background and purpose: The TP53 induced glycolysis and apoptosis regulator (TIGAR) functions to lower fructose-2,6-bisphosphate (Fru-2,6-P2) levels in cells, consequently decreasing glycolysis and leading to the scavenging of reactive oxygen species (ROS), which correlate with a higher resistance to cell death. The decrease in intracellular ROS levels in response to TIGAR may also play a role in the ability of p53 to protect from the accumulation of genomic lesions. Given these good prospects of TIGAR for metabolic regulation and p53-response modulation, we analyzed the effects of TIGAR knockdown in U87MG and T98G glioblastoma-derived cell lines. Methods/results: After TIGAR-knockdown in glioblastoma cell lines, different metabolic parameters were assayed, showing an increase in Fru-2,6-P2, lactate and ROS levels, with a concomitant decrease in reduced glutathione (GSH) levels. In addition, cell growth was inhibited without evidence of apoptotic or autophagic cell death. In contrast, a clear senescent phenotype was observed. We also found that TIGAR protein levels were increased shortly after irradiation. In addition, avoiding radiotherapy-triggered TIGAR induction by gene silencing resulted in the loss of capacity of glioblastoma cells to form colonies in culture and the delay of DNA repair mechanisms, based in c-H2AX foci, leading cells to undergo morphological changes compatible with a senescent phenotype. Thus, the results obtained raised the possibility to consider TIGAR as a therapeutic target to increase radiotherapy effects. Conclusion: TIGAR abrogation provides a novel adjunctive therapeutic strategy against glial tumors by increasing radiation-induced cell impairment, thus allowing the use of lower radiotherapeutic doses.
Resumo:
LncRNAs are transcripts greater than 200 nucleotides in length with no apparent coding potential. They exert important regulatory functions in the genome. Their role in cardiac fibrosis is however unexplored. To identify IncRNAs that could modulate cardiac fibrosis, we profiled the long non-coding transcriptome in the infarcted mouse heart, and identified 1500 novel IncRNAs. These IncRNAs have unique characteristics such as high tissue and cell type specificity. Their expression is highly correlated with parameters of cardiac dimensions and function. The majority of these novel IncRNAs are conserved in human. Importantly, human IncRNAs appear to be differentially expressed in heart disease. Using a computational pipeline, we identified a super-enhancer-associated IncRNA, which is dynamically expressed after myocardial infarction. We named this particular transcript Wisper for «Wisp2 super-enhancer- derived IncRNA ». Interestingly, Wisper expression is overexpressed in cardiac fibroblasts as compared to cardiomyocytes or to fibroblasts isolated from other organs than the heart. The importance of Wisper in the biology of fibroblasts was demonstrated in knockdown experiments. Differentiation of cardiac fibroblast into myofibroblasts in vitro is significantly impaired upon Wisper knockdown. Wisper downregulation in cardiac fibroblasts results in a dramatic reduction of fibrotic gene expression, a diminished cell proliferation and an increase in apoptotic cell death. In vivo, depletion of Wisper during the acute phase of the response to infarction is detrimental via increasing the risk of cardiac rupture. On the other hand, Wisper knockdown following infarction in a prevention study reduces fibrosis and preserves cardiac function. Since WISPER is detectable in the human heart, where it is associated with severe cardiac fibrosis, these data suggest that Wisper could represent a novel therapeutic target for limiting the extent of the fibrotic response in the heart. -- Les long ARN non-codants (IncRNAs) sont des ARN de plus de 200 nucléotides qui ne codent pas pour des protéines. Ils exercent d'importantes fonctions dans le génome. Par contre, leur importance dans le développement de la fibrose cardiaque n'a pas été étudiée. Pour identifier des IncRNAs jouant un rôle dans ce processus, le transcriptome non-codant a été étudié dans le coeur de'souris après un infarctus du myocarde. Nous avons découverts 1500 nouveaux IncRNAs. Ces transcrits ont d'uniques caractéristiques. En particulier ils sont extrêmement spécifiques de sous-populations de cellules cardiaques. Par ailleurs, leur expression est remarquablement corrélée avec les paramètres définissant les dimensions du coeur et la fonction cardiaque. La majorité de ces IncRNAs sont conservés chez l'humain. Certains sont modulés dans des pathologies cardiaques. En utilisant une approche bioinformatique, nous avons identifié un IncRNA qui est associé à des séquences amplificatrices et qui est particulièrement enrichi dans les fibroblastes cardiaques. Ce transcrit a été nommé Wisper pour «Wisp2 super-enhancer-derived IncRNA ». L'importance de Wisper dans la biologie des fibroblastes cardiaques est démontrée dans des expériences de déplétion. En l'absence de Wisper, l'expression de protéines impliquées dans le développement de la fibrose est dramatiquement réduite dans les fibroblastes cardiaques. Ceux-ci montrent une prolifération réduite. Le niveau d'apoptose est largement augmenté. In vivo, la déplétion de Wisper pendant la phase aiguë de l'infarctus rehausse le risque de rupture cardiaque. Au contraire, la réduction de l'expression de Wisper pendant la phase chronique diminue la fibrose cardiaque et améliore la fonction du coeur. Puisque Wisper est exprimé dans le coeur humain, ce transcrit représente une nouvelle cible thérapeutique pour limiter la réponse fibrotique dans le coeur.
Resumo:
Perinatal asphyxia induces neuronal cell death and brain injury, and is often associated with irreversible neurological deficits in children. There is an urgent need to elucidate the neuronal death mechanisms occurring after neonatal hypoxia-ischemia (HI). We here investigated the selective neuronal deletion of the Atg7 (autophagy related 7) gene on neuronal cell death and brain injury in a mouse model of severe neonatal hypoxia-ischemia. Neuronal deletion of Atg7 prevented HI-induced autophagy, resulted in 42% decrease of tissue loss compared to wild-type mice after the insult, and reduced cell death in multiple brain regions, including apoptosis, as shown by decreased caspase-dependent and -independent cell death. Moreover, we investigated the lentiform nucleus of human newborns who died after severe perinatal asphyxia and found increased neuronal autophagy after severe hypoxic-ischemic encephalopathy compared to control uninjured brains, as indicated by the numbers of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3)-, LAMP1 (lysosomal-associated membrane protein 1)-, and CTSD (cathepsin D)-positive cells. These findings reveal that selective neuronal deletion of Atg7 is strongly protective against neuronal death and overall brain injury occurring after HI and suggest that inhibition of HI-enhanced autophagy should be considered as a potential therapeutic target for the treatment of human newborns developing severe hypoxic-ischemic encephalopathy.
MMP-1/PAR-1 signal transduction axis and its prognostic impact in esophageal squamous cell carcinoma
Resumo:
The matrix metalloprotease-1 (MMP-1)/protease-activated receptor-1 (PAR-1) signal transduction axis plays an important role in tumorigenesis. To explore the expression and prognostic value of MMP-1 and PAR-1 in esophageal squamous cell carcinoma (ESCC), we evaluated the expression of two proteins in resected specimens from 85 patients with ESCC by immunohistochemistry. Sixty-two (72.9%) and 58 (68.2%) tumors were MMP-1- and PAR-1-positive, respectively, while no significant staining was observed in normal esophageal squamous epithelium. MMP-1 and PAR-1 overexpression was significantly associated with tumor node metastasis (TNM) stage and regional lymph node involvement. Patients with MMP-1- and PAR-1-positive tumors, respectively, had poorer disease-free survival (DFS) than those with negative ESCC (P = 0.002 and 0.003, respectively). Univariate analysis showed a significant relationship between TNM stage [hazard ratio (HR) = 2.836, 95% confidence interval (CI) = 1.866-4.308], regional lymph node involvement (HR = 2.955, 95%CI = 1.713-5.068), MMP-1 expression (HR = 2.669, 95%CI = 1.229-6.127), and PAR-1 expression (HR = 1.762, 95%CI = 1.156-2.883) and DFS. Multivariate analysis including the above four parameters identified TNM stage (HR = 2.035, 95%CI = 1.167-3.681), MMP-1 expression (HR = 2.109, 95%CI = 1.293-3.279), and PAR-1 expression (HR = 1.967, 95%CI = 1.256-2.881) as independent and significant prognostic factors for DFS. Our data suggest for the first time that MMP-1 and PAR-1 were both overexpressed in ESCC and are novel predictors of poor patient prognosis after curative resection. The MMP-1/PAR-1 signal transduction axis might be a new therapeutic target for future therapies tailored against ESCC.
Resumo:
YKL-40 has been identified as a growth factor in connective tissue cells and also a migration factor in vascular smooth muscle cells. To a large extent, the increase of serum YKL-40 is attributed to liver fibrosis and asthma. However, the relationship of the expression and clinical/prognostic significance of YKL-40 to the splenomegaly of patients with portal hypertension is unclear. In the present study, the expression of YKL-40 was studied by immunohistochemistry in 48 splenomegaly tissue samples from patients with portal hypertension and in 14 normal spleen specimens. All specimens were quickly stored at -80°C after resection. Primary antibodies YKL-40 (1:150 dilution, rabbit polyclonal IgG) and MMP-9 (1:200 dilution, rabbit monoclonal IgG) and antirabbit immunoglobulins (HRP K4010) were used in this study. The relationship of clinicopathologic features with YKL-40 is presented. The expression of YKL-40 indicated by increased immunochemical reactivity was significantly up-regulated in splenomegaly tissues compared to normal spleen tissues. Overexpression of YKL-40 was found in 68.8% of splenomegaly tissues and was significantly associated with Child-Pugh classification (P = 0.000), free portal pressure (correlation coefficient = 0.499, P < 0.01) and spleen fibrosis (correlation coefficient = 0.857, P < 0.01). Further study showed a significant correlation between YKL-40 and MMP-9 (correlation coefficient = -0.839, P < 0.01), indicating that YKL-40 might be an accelerator of spleen tissue remodeling by inhibiting the expression of MMP-9. In conclusion, YKL-40 is an important factor involved in the remodeling of spleen tissue of portal hypertension patients and can be used as a therapeutic target for splenomegaly.