961 resultados para synthesis-free
Resumo:
The design and synthesis of an intensely blue rhodium(III) complex 3]+ of a new N,N-donor ligand, 8-(quinolin-8-ylamino)pyrido2,1-c]1,2,4]benzotriazin-11-ium, 2]+, which contains a planar pendant triazinium arm, is described. Structural characterization for 3]+ was carried out by using various spectroscopic techniques and single-crystal X-ray crystallography. The organometallic rhodium(III) compound shows a ligand-based reversible reduction at 0.65 V. The electrochemically reduced compound displays a single-line EPR spectrum that signifies the formation of ligand-based free radicals. Compound 3]+ shows a binding propensity to calf thymus DNA to give a Kapp value of 6.05X105 M1. The parent triazinium salt, pyrido2,1-c]1,2,4]benzotriazin-11-ium 1]+ and the ligand salt 2]+ exhibit photoinduced cleavage of DNA in UV-A light, whereas the reference Rh complex 3]+ photocleaves DNA with red light (647.1 nm). The compounds show photonuclease activities under both aerobic and anaerobic conditions. Mechanistic investigations under aerobic conditions with several inhibitors indicate the formation of hydroxyl radicals by means of a photoredox pathway. Under anaerobic conditions, it is believed that a photoinduced oxidation of DNA mechanism is operative. Compound 3]+ exhibits photocytotoxicity in HeLa cervical cancer cells to give IC50 values of (12+/-0.9) mu M in UV-A light at 365 nm and (31.4+/-1.1) mu M in the dark.
Resumo:
We report a simple, template free and low-temperature hydrothermal reaction pathway using Cu(II) - thiourea complex (prepared in situ from copper (II) chloride and thiourea as precursors) and citric acid as complexing agent to synthesize two-dimensional hierarchical nano-structures of covellite (CuS). The product was characterized with the help of X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive analysis of X-ray spectroscopy (EDAX) and X-ray photoelectron spectroscopy (XPS). The concentration of citric acid in the hydrothermal precursor solution was seen to have a profound effect on the nanostructure of the product generated. Based on the outcoming product nano-architecture at different concentration of the ionic surfactant in the hydrothermal precursor solution a possible mechanism suited for reaction and further nucleation is also discussed. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We report, strong ultraviolet (UV) emission from ZnO nanoparticle thin film obtained by a green synthesis, where the film is formed by the microwave irradiation of the alcohol solution of the precursor. The deposition is carried out in non-aqueous medium without the use of any surfactant, and the film formation is quick (5 min). The film is uniform comprising of mono-disperse nanoparticles having a narrow size distribution (15-22 nm), and that cover over an entire area (625 mm(2)) of the substrate. The growth rate is comparatively high (30-70 nm/min). It is possible to tune the morphology of the films and the UV emission by varying the process parameters. The growth mechanism is discussed precisely and schematic of the growth process is provided.
Resumo:
Capping-free and linker-free nanostructures/hybrids possess superior properties due to the presence of pristine surfaces and interfaces. In this review, various methods for synthesizing pristine nanomaterials are presented along with the general principles involved in their morphology control. In wet chemical synthesis, the interplay between various reaction parameters results in diverse morphology. The fundamental principles behind the evolution of morphology including nanoporous aggregates of metals and other inorganic materials, 2D nanocrystals of metals is elucidated by capping-free methods in aqueous medium. In addition, strategies leading to the attachment of bare noble metal nanoparticles to functional oxide supports/reduced graphene oxide has been demonstrated which can serve as a simple solution for obtaining thermally stable and efficient supported catalysts with free surfaces. Solution based synthesis of linker-free oxide-semiconductor hybrids and capping-free metal nanowires on substrates are also discussed in this context with ZnO/CdS and ultrathin Au nanowires as examples. A simple and rapid microwave-assisted method is highlighted for obtaining such hybrids which can be employed for high-yield production of similar materials.
Resumo:
In systems biology, questions concerning the molecular and cellular makeup of an organism are of utmost importance, especially when trying to understand how unreliable components-like genetic circuits, biochemical cascades, and ion channels, among others-enable reliable and adaptive behaviour. The repertoire and speed of biological computations are limited by thermodynamic or metabolic constraints: an example can be found in neurons, where fluctuations in biophysical states limit the information they can encode-with almost 20-60% of the total energy allocated for the brain used for signalling purposes, either via action potentials or by synaptic transmission. Here, we consider the imperatives for neurons to optimise computational and metabolic efficiency, wherein benefits and costs trade-off against each other in the context of self-organised and adaptive behaviour. In particular, we try to link information theoretic (variational) and thermodynamic (Helmholtz) free-energy formulations of neuronal processing and show how they are related in a fundamental way through a complexity minimisation lemma.
Resumo:
Free nanoparticles of iron (Fe) and their colloids with high saturation magnetization are in demand for medical and microfluidic applications. However, the oxide layer that forms during processing has made such synthesis a formidable challenge. Lowering the synthesis temperature decreases rate of oxidation and hence provides a new way of producing pure metallic nanoparticles prone to oxidation in bulk amount (large quantity). In this paper we have proposed a methodology that is designed with the knowledge of thermodynamic imperatives of oxidation to obtain almost oxygen-free iron nanoparticles, with or without any organic capping by controlled milling at low temperatures in a specially designed high-energy ball mill with the possibility of bulk production. The particles can be ultrasonicated to produce colloids and can be bio-capped to produce transparent solution. The magnetic properties of these nanoparticles confirm their superiority for possible biomedical and other applications.
Resumo:
We report a simple hydrothermal synthesis of highly reproducible carbon nanoparticles in a size range between 2 and 7 nmfroma single precursor sucrose without either surface passivating agents or acids and bases. The carbon nanoparticles can be used as white light phosphors, especially for ultraviolet light emitting diodes and metal-free catalyst for the reduction of nitrophenol.
Resumo:
This work explores the preparation of nanocrystalline Cr3+ (1-5 mol%) doped CaSiO3 phosphors by solution combustion process and study of its photoluminescence (PL) behavior. The nanopowders are well characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transform infra-red (FTIR) spectroscopy. PXRD results confirm monoclinic phase upon calcination at 950 degrees C for 3 h. SEM micrographs indicates that the powder is highly porous and agglomerated. The TEM images show the powder to consist of spherical shaped particles of size similar to 30-60 nm. Upon 323 nm excitation, the emission profile of CaSiO3:Cr3+ exhibits a narrow red emission peak at 641 nm due to E-2 -> (4)A(2) transition and broad band at 722 nm due to T-4(2g) -> (4)A(2g). It is observed that PL intensity increases with increase in Cr3+ concentration and highest PL intensity is observed for 3 mol% doped sample. The PL intensity decreases with further increase in Cr3+ doping. This decrease in PL intensity beyond 3 mol% is ascribed to concentration quenching. Racah parameters are calculated to describe the effects of electron-electron repulsion within the crystal lattice. The parameters show 21% reduction in the Racah parameter of free ion and the complex, indicating the moderate nephelauxetic effect in the lattice. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
We have synthesized Ag-Cu alloy nanoparticles of four different compositions by using the laser ablation technique with the target under aqueous medium. Following this, we report a morphological transition in the nanoparticles from a normal two-phase microstructure to a structure with random segregation and finally a core shell structure at small sizes as a function of Cu concentration. To illustrate the composition dependence of morphology, we report observations carried out on nanoparticles of two different sizes: similar to 5 and similar to 20 nm. The results could be rationalized through the thermodynamic modeling of free energy of phase mixing and wettability of the alloying phases.
Resumo:
We report a one-pot hydrothermal synthesis of nitrogen doped reduced graphene oxide (N-rGO) and Ag nanoparticle decorated N-rGO hybrid nanostructures from graphene oxide (GO), metal ions and hexamethylenetetramine (HMT). HMT not only reduces GO and metal ions simultaneously but also acts as the source for the nitrogen (N) dopant. We show that the N-rGO can be used as a metal-free surface enhanced Raman spectroscopy (SERS) substrate, while the Ag nano-particles decorated N-rGO can be used as an effective SERS substrate as well as a template for decorating various other nanostructures on N-rGO.
Resumo:
A diazo species is trapped in an intermolecular fashion by two independent ion species in tandem at the carbene center to install an electrophile and a nucleophile on the same carbon. This metal-free concept, which is unprecedented, has been illustrated by regioselective synthesis of a variety of vinyl halides, vinyl sulfones, and alkyne derivatives.
Resumo:
Designing and implementing thread-safe multithreaded libraries can be a daunting task as developers of these libraries need to ensure that their implementations are free from concurrency bugs, including deadlocks. The usual practice involves employing software testing and/or dynamic analysis to detect. deadlocks. Their effectiveness is dependent on well-designed multithreaded test cases. Unsurprisingly, developing multithreaded tests is significantly harder than developing sequential tests for obvious reasons. In this paper, we address the problem of automatically synthesizing multithreaded tests that can induce deadlocks. The key insight to our approach is that a subset of the properties observed when a deadlock manifests in a concurrent execution can also be observed in a single threaded execution. We design a novel, automatic, scalable and directed approach that identifies these properties and synthesizes a deadlock revealing multithreaded test. The input to our approach is the library implementation under consideration and the output is a set of deadlock revealing multithreaded tests. We have implemented our approach as part of a tool, named OMEN1. OMEN is able to synthesize multithreaded tests on many multithreaded Java libraries. Applying a dynamic deadlock detector on the execution of the synthesized tests results in the detection of a number of deadlocks, including 35 real deadlocks in classes documented as thread-safe. Moreover, our experimental results show that dynamic analysis on multithreaded tests that are either synthesized randomly or developed by third-party programmers are ineffective in detecting the deadlocks.
Resumo:
One-dimensional (1D) zinc oxide (ZnO) hexagonal rods have been successfully synthesized by surfactant free hydrothermal process at different temperatures. It can be found that the reaction temperature play a crucial role in the formation of ZnO uniform hexagonal rods. The possible formation processes of 1-D ZnO hexagonal rods were investigated. The zinc hydroxide acts as the morphology-formative intermediate for the formation of ZnO nanorods. Upon excitation at 325 nm, the sample prepared at 180 degrees C show several emission bands at 400 nm (similar to 3.10 eV), 420 nm (similar to 2.95 eV), 482 nm (similar to 2.57 eV) and 524 nm (similar to 2.36 eV) corresponding to different kind of defects. TL studies were carried out by pre-irradiating samples with gamma-rays ranging from 1 to 7 kGy at room temperature. A well resolved glow peak at similar to 354 degrees C was recorded which can be ascribed to deep traps. Furthermore, the defects associated with surface states in ZnO nano-structures are characterized by electron paramagnetic resonance. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
This paper explores phase formation and phase stability in free nanoparticles of binary alloys. A procedure for estimating the size and composition dependent free energies incorporating the contributions from the interfaces has been presented. Both single phase solid solution and two phase morphology containing interphase interfaces have been considered. A free energy scenario has been evaluated for two binary alloy systems Ag-Ni and Ag-Cu to predict the microstructure of the alloy nanoparticles at different size ranges as a function of composition. Both Ag-Cu and Ag-Ni systems exhibit wide bulk immiscibility. Ag-Ni nanoparticles were synthesized using the wet chemical synthesis technique whereas Ag-Cu nanoparticles were synthesized using laser ablation of a Ag-Cu target immersed in distilled water. Microstructural and compositional characterization of Ag-Ni and Ag-Cu nanoparticles on a single nanoparticle level was conducted using transmission electron microscopy. Nanoparticle microstructures observed from the microscopic investigation have been correlated with thermodynamic calculation results. It is shown that the observed two phase microstructure consisting of Ag-Ni solid solution in partial decomposed state coexisting with pure Ag phases in the case of Ag-Ni nanoparticles can be only be rationalized by invoking the tendency for phase separation of an initial solid solution with increase in nanoparticle size. Smaller sized Ag-Ni nanoparticles prefer a single phase solid solution microstructure. Due to an increase in particle size during the synthesis process the initial solid solution decomposes into an ultrafine scale phase separated microstructure. We have shown that it is necessary to invoke critical point phenomenon and wetting transition in systems showing a critical point that leads to phase separated Ag-Ni nanoparticles providing a catalytic substrate for the nucleation of equilibrium Ag over it. In the case of the Ag-Cu system, we report the experimental observation of a core shell structure at small sizes. This can be rationalized in terms of a metastable solid solution. It is argued that the nucleation barrier can prevent the formation of biphasic morphology with an internal interface. In such a situation, demixing of the solid solution can bring the system to a lower energy configuration. This has lead to the observed core-shell morphology in the Ag-Cu system during room temperature synthesis.
Resumo:
Current paper reports synthesis of chemical free graphene by unzipping of the carbon nanotubes (CNTs) using high strain rate deformation at 150K. A specially designed cryomill operating at 150 K was used for the experiments. The mechanism of unzipping was further explored using molecular dynamics (MD) simulations. Both experimental and simulation results reveal two modes of unzipping through radial and shear loading. (C) 2015 Elsevier Ltd. All rights reserved.