960 resultados para sustainable buildings
Resumo:
The building sector is one of the highest consumers of energy in the world. This has led to high dependency on using fossil fuel to supply energy without due consideration to its environmental impact. Saudi Arabia has been through rapid development accompanied by population growth, which in turn has increased the demand for construction. However, this fast development has been met without considering sustainable building design. General design practices rely on using international design approaches and features without considering the local climate and aspects of traditional passive design. This is by constructing buildings with a large amount of glass fully exposed to solar radiation. The aim of this paper is to investigate the development of sustainability in passive design and vernacular architecture. Furthermore, it compares them with current building in Saudi Arabia in terms of making the most of the climate. Moreover, it will explore the most sustainable renewable energy that can be used to reduce the environmental impact on modern building in Saudi Arabia. This will be carried out using case studies demonstrating the performance of vernacular design in Saudi Arabia and thus its benefits in terms of environmental, economic and social sustainability. It argues that the adoption of a hybrid approach can improve the energy efficiency as well as reduce the carbon footprint of buildings. This is by combining passive design, learning from the vernacular architecture and implementing innovative sustainable technologies.
Resumo:
Cities are responsible for up to 70% of global carbon emissions and 75% of global energy consumption. By 2050 it is estimated that 70% of the world's population will live in cities. The critical challenge for contemporary urbanism, therefore, is to understand how to develop the knowledge, capacity and capability for public agencies, the private sector and multiple users in city-regions (i.e. the city and its wider hinterland) to re-engineer systemically their built environment and urban infrastructure in response to climate change and resource constraints. To inform transitions to urban sustainability, key stakeholders' perceptions were sought though a participatory backcasting and scenario foresight process in order to illuminate challenging but realistic socio-technical scenarios for the systemic retrofit of core UK city-regions. The challenge of conceptualizing complex urban transitions is explored across multiple socio-technical ‘regimes’ (housing, non-domestic buildings, urban infrastructure), scales (building, neighbourhood, city-region), and domains (energy, water, use of resources) within a participatory process. The development of three archetypal ‘guiding visions’ of retrofit city-regional futures developed through this process are discussed, along with the contribution that such foresight processes might play in ‘opening up’ the governance and strategic navigation of urban sustainability.
Resumo:
That construction procurement needs to be re-organized to make it more sustainable implies that there is a problem with the current situation. Starting from this assumption, an overview of construction procurement sets the scene for a discussion of some recent developments relating to organizational frameworks for sustainable construction procurement. Emergent theories dealing with sustainable procurement are considered. There is a plethora of standards and guidance documents for organizing sustainable procurement, originating from a variety of organizations involved. These considerations form the context for approaches being used in practice to achieve sustainable procurement. The Chapter concludes with reflections on why current approaches are insufficient. It seems difficult to persuade clients to spend less money over the life cycle of their buildings. Future directions needed to translate sustainable procurement from rhetoric to reality include the development of suitable incentives and appropriate organizational structures.
Resumo:
The sustainable intelligent building is a building that has the best combination of environmental, social, economic and technical values. And its sustainability assessment is related with system engineering methods and multi-criteria decision-making. Therefore firstly, the wireless monitoring system of sustainable parameters for intelligent buildings is achieved; secondly, the indicators and key issues based on the “whole life circle” for sustainability of intelligent buildings are researched; thirdly, the sustainable assessment model identified on the structure entropy and fuzzy analytic hierarchy process is proposed.
Resumo:
It is necessary to minimize the environmental impact and utilize natural resources in a sustainable and efficient manner in the early design stage of developing an environmentally-conscious design for a heating, ventilating and air-conditioning system. Energy supply options play a significant role in the total environmental load of heating, ventilating and air-conditioning systems. To assess the environmental impact of different energy options, a new method based on Emergy Analysis is proposed. Emergy Accounting, was first developed and widely used in the area of ecological engineering, but this is the first time it has been used in building service engineering. The environmental impacts due to the energy options are divided into four categories under the Emergy Framework: the depletion of natural resources, the greenhouse effect (carbon dioxide equivalents), the chemical rain effect (sulphur dioxide equivalents), and anthropogenic heat release. The depletion of non-renewable natural resources is indicated by the Environmental Load Ratio, and the environmental carrying capacity is developed to represent the environmental service to dilute the pollutants and anthropogenic heat released. This Emergy evaluation method provides a new way to integrate different environmental impacts under the same framework and thus facilitates better system choices. A case study of six different kinds of energy options consisting of renewable and non-renewable energy was performed by using Emergy Theory, and thus their relative environmental impacts were compared. The results show that the method of electricity generation in energy sources, especially for electricity-powered systems, is the most important factor to determine their overall environmental performance. The direct-fired lithium-bromide absorption type consumes more non-renewable energy, and contributes more to the urban heat island effect compared with other options having the same electricity supply. Using Emergy Analysis, designers and clients can make better-informed, environmentally-conscious selections of heating, ventilating and air-conditioning systems.
Resumo:
The United Kingdom is committed to a raft of requirements to create a low-carbon economy. Buildings consume approximately 40% of UK energy demand. Any improvement on the energy performance of buildings therefore can significantly contribute to the delivery of a low-carbon economy. The challenge for the construction sector and its clients is how to meet the policy requirements to deliver low and zero carbon (LZC) buildings, which spans broader than the individual building level, to requirements at the local and regional levels, and wider sustainability pressures. Further, the construction sector is reporting skills shortages coupled with the need for ‘new skills’ for the delivery of LZC buildings. The aim of this paper is to identify, and better understand, the skills required by the construction sector and its clients for the delivery of LZC buildings within a region. The theoretical framing for this research is regional innovation system (RIS) using a socio-technical network analysis (STNA) methodology. A case study of a local authority region is presented. Data is drawn from a review of relevant local authority documentation, observations and semi-structured interviews from one (project 1) of five school retrofit projects within the region. The initial findings highlight the complexity surrounding the form and operation of the LZC network for project 1. The skills required by the construction sector and its clients are connected to different actor roles surrounding the delivery of the project. The key actors involved and their required skills are: project management and energy management skills required by local authority; project management skills (in particular project planning), communication and research skills required by school end-users; and a ‘technical skill’ relating to knowledge of a particular energy efficient measure (EEM) and use of equipment to implement the EEM is required by the EEM contractors.
Resumo:
In the UK, urban river basins are particularly vulnerable to flash floods due to short and intense rainfall. This paper presents potential flood resilience approaches for the highly urbanised Wortley Beck river basin, south west of the Leeds city centre. The reach of Wortley Beck is approximately 6km long with contributing catchment area of 30km2 that drain into the River Aire. Lower Wortley has experienced regular flooding over the last few years from a range of sources, including Wortley Beck and surface and ground water, that affects properties both upstream and downstream of Farnley Lake as well as Wortley Ring Road. This has serious implications for society, the environment and economy activity in the City of Leeds. The first stage of the study involves systematically incorporating Wortley Beck’s land scape features on an Arc-GIS platform to identify existing green features in the region. This process also enables the exploration of potential blue green features: green spaces, green roofs, water retention ponds and swales at appropriate locations and connect them with existing green corridors to maximize their productivity. The next stage is involved in developing a detailed 2D urban flood inundation model for the Wortley Beck region using the CityCat model. CityCat is capable to model the effects of permeable/impermeable ground surfaces and buildings/roofs to generate flood depth and velocity maps at 1m caused by design storm events. The final stage of the study is involved in simulation of range of rainfall and flood event scenarios through CityCat model with different blue green features. Installation of other hard engineering individual property protection measures through water butts and flood walls are also incorporated in the CityCat model. This enables an integrated sustainable flood resilience strategy for this region.
Resumo:
This work aims to study and analyze strategies and measures to improve energy performance in residential and service buildings, in order to minimize energy losses and energy consumption. Due to the high energy dependence of European Union (EU), including Portugal and Slovenia, and high percentage of energy consumption in the building sector, there was a need to adopt strategies at European level with ambitious goals. This came to force EU - Member States to take measures to achieve the proposed targets for energy consumption reduction. To this end, EU - Member States have adapted the laws to their needs and formed specialized agencies and qualified experts on energy certification, which somehow evaluate buildings according to their performance. In this study, the external characteristics of the building in order to meet its thermal needs and from there to survey the existing and possible constructive solutions to be used at the envelope will be examined, in order to increase comfort and reduce the need of use technical means of air conditioning. The possibility of passive heating and ventilation systems also will be discussed. These techniques are developed in parallel with the deployment and design of the building. In this manner, to reduce the energy consumption, various techniques and technologies exploit natural resources. Thus, appear the more sustainable and efficient buildings, so-called Green Buildings have been appeared. The study ends with the identification of measures used in several buildings, proving the economic return in the medium to long term, as well as the satisfaction of their users.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Consecrated in 1297 as the monastery church of the four years earlier founded St. Catherine’s monastery, the Gothic Church of St. Catherine was largely destroyed in a devastating bombing raid on January 2nd 1945. To counteract the process of disintegration, the departments of geo-information and lower monument protection authority of the City of Nuremburg decided to getting done a three dimensional building model of the Church of St. Catherine’s. A heterogeneous set of data was used for preparation of a parametric architectural model. In effect the modeling of historic buildings can profit from the so called BIM method (Building Information Modeling), as the necessary structuring of the basic data renders it into very sustainable information. The resulting model is perfectly suited to deliver a vivid impression of the interior and exterior of this former mendicant orders’ church to present observers.
Resumo:
This contribution deals with the question, what makes cities sustainable and integrative, and suggests an approach for "liveable cities of tomorrow" designed to sustain mobility. The liveable city of tomorrow needs to meet both ecological and social requirements in an integrative approach. To design urban patterns appropriate or “sustainable mobility” based on a concept of mobility defined as the number of accessible destinations (different to that for “fossil mobility” defined as the ability to cover distances) is a key element of such an approach. Considering the limited reserves of fossil fuels and the long lifetime of the built structure, mobility needs to rely on modes independent of fossil fuels (public transport and pedestrians) to make it sustainable and the urban pattern needs to be developed appropriately for these modes. Crucial for the success of public transport is the location of buildings within the catchment area of stops. An attractive urban environment for pedestrians is characterised by short distances in a compact settlement with appropriate/qualified urban density and mixed land use as well as by attractive public space. This, complemented by an integrative urban development on the quarter level including neighbourhood management with a broad spectrum of activity areas (social infrastructure, integration of diverse social and ethnic groups, health promotion, community living, etc.), results in increased liveability. The role of information technology in this context is to support a sustainable use of the built structures by organisational instruments. Sustainable and liveable communities offer many benefits for health, safety and well-being of their inhabitants.