959 resultados para surface texture
Resumo:
The effects of treatment of an activated carbon with Sulphur precursors on its textural properties and on the ability of the complex synthesized for mercury removal in aqueous solutions are studied. To this end, a commercial activated carbon has been modified by treatments with aqueous solutions of Na2S and H2SO4 at two temperatures (25 and 140 °C) to introduce sulphur species on its surface. The prepared adsorbents have been characterized by N2 (-196 °C) and CO2 (0 °C) adsorption, thermogravimetric analysis, temperature-programmed decomposition and X-ray photoelectron spectroscopy, and their adsorption capacities to remove Hg(II) ions in aqueous solutions have been determined. It has been shown that the impregnation treatments slightly modified the textural properties of the samples, with a small increase in the textural parameters (BET surface area and mesopore volumes). By contrast, surface oxygen content was increased when impregnation was carried out with Na2S, but it decreased when H2SO4 was used. However, the main effect of the impregnation treatments was the formation of surface sulphur complexes of thiol type, which was only achieved when the impregnation treatments were carried out at low temperature (25 °C). The presence of surface sulphur enhances the adsorption behaviour of these samples in the removal of Hg(II) cations in aqueous solutions at pH 2. In fact, complete Hg(II) removal is only obtained with the sulphur-containing activated carbons.
Resumo:
Resorcinol-Formaldehyde xerogels are organic polymers that can be easily tailored to have specific properties. These materials are composed of carbon, hydrogen and oxygen, and have a surface that is very rich in oxygen functionalities, and is therefore very hydrophilic. Their most interesting feature is that they may have the same chemical composition but a different porous texture. Consequently, the influence of porous characteristics, such as pore volume, surface area or pore size can be easily assessed. In this work, a commonly used desiccant, silica gel, is compared with organic xerogels to determine their rate and capacity of water adsorption, and to evaluate the role of surface chemistry versus porous texture. It was found that organic xerogels showed a higher rate of moisture adsorption than silica gel. Pore structure also seems to play an important role in water adsorption capacity. The OX-10 sample, whose porosity was mainly composed of micro-mesoporosity displayed a water adsorption capacity two times greater than that of the silica gel, and three times higher than that of the totally macroporous xerogel OX-2100. The presence of feeder pores (mesopores) that facilitate the access to the hydrophilic surface was observed to be the key factor for a good desiccant behaviour. Neither the total pore volume nor the high surface area (i.e. high microporosity) of the desiccant sample, is as important as the mesopore structure.
Resumo:
The edge-to-edge matching model, which was originally developed for predicting crystallographic features in diffusional phase transformations in solids, has been used to understand the formation of in-plane textures in TiSi2 (C49) thin films on Si single crystal (001)si surface. The model predicts all the four previously reported orientation relationships between C49 and Si substrate based on the actual atom matching across the interface and the basic crystallographic data only. The model has strong potential to be used to develop new thin film materials. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Previous studies have suggested separate channels for detection of first-order luminance modulations (LM) and second-order modulations of the local amplitude (AM) of a texture. Mixtures of LM and AM with different phase relationships appear very different: in-phase compounds (LM + AM) look like 3-D corrugated surfaces, while out-of-phase compounds (LM - AM) appear flat and/or transparent. This difference may arise because the in-phase compounds are consistent with multiplicative shading, while the out-of-phase compounds are not. We investigated the role of these modulation components in surface depth perception. We used a textured background with thin bars formed by local changes in luminance and/or texture amplitude. These stimuli appear as embossed surfaces with wide and narrow regions. Keeping the AM modulation depth fixed at a suprathreshold level, we determined the amount of luminance contrast required for observers to correctly indicate the width (narrow or wide) of 'raised' regions in the display. Performance (compared to the LM-only case) was facilitated by the presence of AM, but, unexpectedly, performance for LM - AM was as good as for LM + AM. Thus, these results suggest that there is an interaction between first-order and second-order mechanisms during depth perception based on shading cues, but the phase dependence is not yet understood.
Resumo:
Accurate road lane information is crucial for advanced vehicle navigation and safety applications. With the increasing of very high resolution (VHR) imagery of astonishing quality provided by digital airborne sources, it will greatly facilitate the data acquisition and also significantly reduce the cost of data collection and updates if the road details can be automatically extracted from the aerial images. In this paper, we proposed an effective approach to detect road lanes from aerial images with employment of the image analysis procedures. This algorithm starts with constructing the (Digital Surface Model) DSM and true orthophotos from the stereo images. Next, a maximum likelihood clustering algorithm is used to separate road from other ground objects. After the detection of road surface, the road traffic and lane lines are further detected using texture enhancement and morphological operations. Finally, the generated road network is evaluated to test the performance of the proposed approach, in which the datasets provided by Queensland department of Main Roads are used. The experiment result proves the effectiveness of our approach.
Impact of soil texture on the distribution of soil organic matter in physical and chemical fractions
Resumo:
Previous research on the protection of soil organic C from decomposition suggests that soil texture affects soil C stocks. However, different pools of soil organic matter (SOM) might be differently related to soil texture. Our objective was to examine how soil texture differentially alters the distribution of organic C within physically and chemically defined pools of unprotected and protected SOM. We collected samples from two soil texture gradients where other variables influencing soil organic C content were held constant. One texture gradient (16-60% clay) was located near Stewart Valley, Saskatchewan, Canada and the other (25-50% clay) near Cygnet, OH. Soils were physically fractionated into coarse- and fine-particulate organic matter (POM), silt- and clay-sized particles within microaggregates, and easily dispersed silt-and clay-sized particles outside of microaggregates. Whole-soil organic C concentration was positively related to silt plus clay content at both sites. We found no relationship between soil texture and unprotected C (coarse- and fine-POM C). Biochemically protected C (nonhydrolyzable C) increased with increasing clay content in whole-soil samples, but the proportion of nonhydrolyzable C within silt- and clay-sized fractions was unchanged. As the amount of silt or clay increased, the amount of C stabilized within easily dispersed and microaggregate-associated silt or clay fractions decreased. Our results suggest that for a given level of C inputs, the relationship between mineral surface area and soil organic matter varies with soil texture for physically and biochemically protected C fractions. Because soil texture acts directly and indirectly on various protection mechanisms, it may not be a universal predictor of whole-soil C content.
Resumo:
Road surface macro-texture is an indicator used to determine the skid resistance levels in pavements. Existing methods of quantifying macro-texture include the sand patch test and the laser profilometer. These methods utilise the 3D information of the pavement surface to extract the average texture depth. Recently, interest in image processing techniques as a quantifier of macro-texture has arisen, mainly using the Fast Fourier Transform (FFT). This paper reviews the FFT method, and then proposes two new methods, one using the autocorrelation function and the other using wavelets. The methods are tested on pictures obtained from a pavement surface extending more than 2km's. About 200 images were acquired from the surface at approx. 10m intervals from a height 80cm above ground. The results obtained from image analysis methods using the FFT, the autocorrelation function and wavelets are compared with sensor measured texture depth (SMTD) data obtained from the same paved surface. The results indicate that coefficients of determination (R2) exceeding 0.8 are obtained when up to 10% of outliers are removed.
Resumo:
The aim of the paper is to give a feasibility study on the material deposition of Nanoscale textured morphology of titanium and titanium oxide layers on titanium and glass substrates. As a recent development in nanoscale deposition, Physical Vapor Deposition (PVD) based DC magnetron sputtering has been the choice for the deposition process. The nanoscale morphology and surface roughness of the samples have been characterized using Atomic Force Microscope (AFM). The surface roughnesses obtained from AFM have been compared using surface profiler. From the results we can say that the roughness values are dependent on the surface roughness of the substrate. The glass substrate was relatively smoother than the titanium plate and hence lower layer roughness was obtained. From AFM a unique nano-pattern of a boomerang shaped titanium oxide layer on glass substrate have been obtained. The boomerang shaped nano-scale pattern was found to be smaller when the layer was deposited at higher sputtering power. This indicated that the morphology of the deposited titanium oxide layer has been influenced by the sputtering power.
Resumo:
The solidification behaviour is described of two pure metals (Bi and Ni) and two eutectic alloys (A1-Ge and AI-Cu) under nonequilibrium conditions, in particular the microsecond pulsed laser surface melting. The resolidification behaviour of bismuth shows that epitaxial regrowth is the dominant mechanism. For mixed grain size, regrowth of larger grains dominates the microstructure and can result in the development of texture. In the case of nickel, epitaxial growth has been noted. For lower energy pulse-melted pool, grain refinement takes place, indicating nucleation of fresh nickel grains. The A1-Ge eutectic alloy indicates the nucleation and columnar growth of a metastable monoclinic phase from the melt-substrate interface at a high power density laser irradiation. An equiaxed microstructure containing the same monoclinic phase is obtained at a lower power density laser irradiation. It is shown that the requirement of solution partition acts as a barrier to eutectic regrowth from the substrate. The laser-melted pool of A1-Cu eutectic alloy includes columnar growth of c~-A1 and 0-A12Cu phase followed by the dendritic growth of A12Cu phase with ct-Al forming at the interdendritic space. In addition, a banded microstructure was observed in the resolidified laser-melted pool.
Resumo:
The human visual system has adapted to function in different lighting environments and responds to contrast instead of the amount of light as such. On the one hand, this ensures constancy of perception, for example, white paper looks white both in bright sunlight and in dim moonlight, because contrast is invariant to changes in overall light level. On the other hand, the brightness of the surfaces has to be reconstructed from the contrast signal because no signal from surfaces as such is conveyed to the visual cortex. In the visual cortex, the visual image is decomposed to local features by spatial filters that are selective for spatial frequency, orientation, and phase. Currently it is not known, however, how these features are subsequently integrated to form objects and object surfaces. In this thesis the integration mechanisms of achromatic surfaces were studied by psychophysically measuring the spatial frequency and orientation tuning of brightness perception. In addition, the effect of textures on the spread of brightness and the effect of phase of the inducing stimulus on brightness were measured. The novel findings of the thesis are that (1) a narrow spatial frequency band, independent of stimulus size and complexity, mediates brightness information (2) figure-ground brightness illusions are narrowly tuned for orientation (3) texture borders, without any luminance difference, are able to block the spread of brightness, and (4) edges and even- and odd-symmetric Gabors have a similar antagonistic effect on brightness. The narrow spatial frequency tuning suggests that only a subpopulation of neurons in V1 is involved in brightness perception. The independence of stimulus size and complexity indicates that the narrow tuning reflects hard-wired processing in the visual system. Further, it seems that figure-ground segregation and mechanisms integrating contrast polarities are closely related to the low level mechanisms of brightness perception. In conclusion, the results of the thesis suggest that a subpopulation of neurons in visual cortex selectively integrates information from different contrast polarities to reconstruct surface brightness.
Effect of the method of preparation and pretreatment on the texture of alumina and related catalysts
Resumo:
The effect of the method of preparation and pretreatment on catalyst texture was investigated in the case of alumina, silica-alumina, 10 × molecular sieve and thoria catalysts. All the catalysts were characterised with respect to their specific surface area, surface acidity, pore size distribution and pore volume. The above properties were found to reflect the textural changes that might have been undergone by the catalyst surface as a result of the method of preparation and pretreatment. The method of preparation was found to influence markedly the acidity of the surface and to a lesser extent the surface area and pore size distribution. Acid-treatment was found to increase selectively the acidity of the catalyst while heat-treatment was found to decrease proportionally the acidity as well as surface area of the catalyst.
Resumo:
The evolution of microstructure and texture gradient in warm Accumulative Roll Bonded Cu-Cu multilayer has been studied. Grain size distribution is multimodal and exhibits variation from middle to surface layer. Evolution of texture is largely influenced by shear, in addition to rolling deformation. This leads to the formation of a texture comprising of high fraction of Brass and rolling direction-rotated cube components. Partial recrystallization was observed. Deformed and recrystallized grains were separated using a partition scheme based on grain orientation spread and textures were analyzed for both the partition. Retention of deformation texture components in recrystallized grains suggests the mechanism of recrystallization as continuous recrystallization. Shear deformation plays an important role in grain refinement through continuous recrystallization. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Understanding and controlling growth stress is a requisite for integrating oxides with Si. Yttria stabilized zirconia (YSZ) is both an important functional oxide and a buffer layer material needed for integrating other functional oxides. Stress evolution during the growth of (100) and (111) oriented YSZ on Si (100) by radio frequency and reactive direct current sputtering has been investigated with an in-situ monitor and correlated with texture evolution. Films nucleated at rates <5 nm/min are found to be (111) oriented and grow predominantly under a compressive steady state stress. Films nucleated at rates >20 nm/min are found to be (100) oriented and grow under tension. A change in growth rate following the nucleation stage does not change the orientation. The value of the final steady state stress varies from -4.7 GPa to 0.3 GPa. The in-situ studies show that the steady state stress generation is a dynamic phenomenon occurring at the growth surface and not decided at film nucleation. The combination of stress evolution and texture evolution data shows that the adatom injection into the grain boundaries is the predominant source of compressive stress and grain boundary formation at the growth surface is the source of tensile stress. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4757924]
Resumo:
Fe0.05Co0.95Sb2.875Te0.125, a double-element-substituted skutterudite, was prepared by induction melting, annealing, and hot pressing (HP). The hot-pressed sample was subjected to high-pressure torsion (HPT) with 4 GPa pressure at 673 K. X-ray diffraction was performed before and after HPT processing of the sample; the skutterudite phase was observed as a main phase, but an additional impurity phase (CoSb2) was observed in the HPT-processed sample. Surface morphology was determined by high-resolution scanning electron microscopy. In the HP sample, coarse grains with sizes in the range of approximately 100 nm to 300 nm were obtained. They changed to fine grains with a reduction in grain size to 75 nm to 125 nm after HPT due to severe plastic deformation. Crystallographic texture, as measured by x-ray diffraction, indicated strengthening of (112), (102) poles and weakening of the (123) pole of the HPT-processed sample. Raman-active vibrational modes showed a peak position shift towards the lower energy side, indicating softening of the modes after HPT. The distortion of the rectangular Sb-Sb rings leads to broadening of Sb-Sb vibrational modes due to local strain fluctuation. In the HPT process, a significant effect on the shorter Sb-Sb bond was observed as compared with the longer Sb-Sb bond.