480 resultados para sunlight
Resumo:
The Mekong Delta region in southern Vietnam has high potential for coastal aquaculture, including mollusc culture. Many mollusc species are cultured for domestic and export markets including white clam (Meretrix lyrata Showerby) and blood cockle (Arca granosa). Techniques for clam farming include the nursery and grow-out phases. At present, there are approximately 600 coastal families engaged in clam farming over a total area of 1,870 ha, of which 82.63% is used for the grow-out phased and 17.7% for the nursery phase. Nursery areas are near the coast and receive less than 5 hours of sunlight per day. The average area for a nursery is 3-4 ha and it is fenced with a net or bamboo stakes to prevent clams from escaping and to prevent water currents from carrying them away. Grow-out farm areas are further from the coast and are exposed to sunlight for only 2-3 hours/day. Average farm area for grow-out is 5-6 ha, and may or may not be fenced. Average operating cost is US$1100 per ha for nursery and US$757 per ha for grow-out (the cost of capital assets are not included) with loans being the main source of financial. Problems for clam farmers in the area include natural phenomena, inadequate culture techniques, lack of financing or credit systems, and marketing. Environment-related problems that cause clam mortality include flooding, and freshwater effluent and siltation or sedimentation from Mekong River. Other problems that constrain the development of clam culture in the area are: marketing problems such as lack of buyers and price fluctuations; exploitation of the natural clam populations.
Resumo:
Marine microalgae support world fisheries production and influence climate through various mechanisms. They are also responsible for harmful blooms that adversely impact coastal ecosystems and economies. Optimal growth and survival of many bloom-forming microalgae, including climatically important dinoflagellates and coccolithophores, requires the close association of specific bacterial species, but the reasons for these associations are unknown. Here, we report that several clades of Marinobacter ubiquitously found in close association with dinoflagellates and coccolithophores produce an unusual lower-affinity dicitrate siderophore, vibrioferrin (VF). Fe-VF chelates undergo photolysis at rates that are 10–20 times higher than siderophores produced by free-living marine bacteria, and unlike the latter, the VF photoproduct has no measurable affinity for iron. While both an algal-associated bacterium and a representative dinoflagellate partner, Scrippsiella trochoidea, used iron from Fe-VF chelates in the dark, in situ photolysis of the chelates in the presence of attenuated sunlight increased bacterial iron uptake by 70% and algal uptake by >20-fold. These results suggest that the bacteria promote algal assimilation of iron by facilitating photochemical redox cycling of this critical nutrient. Also, binary culture experiments and genomic evidence suggest that the algal cells release organic molecules that are used by the bacteria for growth. Such mutualistic sharing of iron and fixed carbon has important implications toward our understanding of the close beneficial interactions between marine bacteria and phytoplankton, and the effect of these interactions on algal blooms and climate.
Resumo:
样带是沿全球变化某一驱动因素的主要梯度而设置的由一系列研究站点构成的区域,被认为是研究全球变化与陆地生态系统关系的最有效的途径。而模型研究是全球变化研究中不可或缺的手段。本文即采用模型研究方法研究中国东北温带样带(NECT)区域,试图揭示温带生态系统对于全球变化(尤其是降水)的反应机制。
中国东北温带样带(NECT)位于42°N - 46°N,108°E - 132°E,长约二千多公里,是最早被列入GCTE的四条样带之一,从东到西有明显的湿度梯度,被认为是温带区域研究水分梯度的代表性样带。本文研究主要集中在:
1.NECT中环境数据库的建立,本文采用EIS作为数据管理系统。由于EIS管理空间数据的特点是根据确定的地理坐标来提供空间定位,因而每一环境因子的属性值分布都有确定的地理坐标与其对应,特别适合于样带这种研究区域较大,同时又要求有精确空间定位的区域。NECT环境数据库包括地形、气候、植被、土壤、土地利用、水文、孢粉数据及社会经济等分库、本数据库力图提供各环境因子的各种属性值而代替仅仅提供类型值。
2.NECT中PFTs的划分PFTs的划分被认为是建立DGVM的前提。本文认为PFTs的划分是模型研究中一个尺度上升过程的结果,不同的尺度,不同的研究目标导致不同的PFTs的划分。在NECT区域中,考虑植被对全球变化中降水因子的不同反映机制,采用生活型、高度、耐旱特性、叶子大小、叶子季相、主根深度和木质化程度等指标根据- TWINSPAN和FCLUS进行划分,得到以下9种NECT区域中植被功能类型:常绿针叶树种、落叶针叶树种、落叶阔叶树种、落叶小叶灌木、落叶小叶半灌木、落叶强旱生半灌木、多年生中旱生草本、适应旱生环境的多年生草本和多年生强旱生草本。对NECT区域中PFTs的DCA分析表明降水是控制PFTs在NECT区域中分布的主要环境因子。在代表景观层次的长白山PFTs的划分中,则采用树种有记载的最大寿命、最大胸径、最大树高、各树种生长参数、树种自然分布区内>5℃的有效积温的最小值和最大值、耐阴、耐旱、喜肥特性、树种的扩散更新,就地下种更新和萌条更新能力参数及叶子大小和类型等指标采用上述软件得到的以下PFTs:即不耐荫阔叶树种、耐荫阔叶树种、耐荫针叶树种和不耐荫的阳生针叶树种。
3.NECT中BCM模型的建立和预测 本文认为土壤水是决定SPC系统水分状况的直接指标。而均衡土壤水分剖面代表了土壤水的多年平均状态,因而本文以Watershed模型为基础,模拟NECT区域中任意一点的均衡土壤水分剖面(精度为每经纬网格32×48个点);然后根据这个均衡水分剖面用计算LAI子模型确定该水分剖面所能支持的LAI;进而根据这个LAI由Biome等模型划分出Biome在NECT中的分布。全球变化的结果将改变区域中任意一点的土壤水分状况,从而影响植被的LAI,进而导致Biome的改变。本模型成功的模拟了LAI和Biome在NECT区域中的分布,利用85-90生长季每月平均的NDVI作相关检验表明除5月份以外,相关系数都>0.7,而5月份也达到0,6457,都达到了极显著的程度。尤为重要的是,模型对于不同植被类型的NDVI与LAI的对应关系有良好的模拟,如针叶林的LAI在相同的NDVI值下明显比阔叶林小,因而模型模拟的LAI在NECT东部针叶林分布区LAI值比针阔混交林明显偏小,而与Spanmen等(1990)所提出的针叶林叶面积指数与NDVI关系非常一致。模型的预测显示:(1) T+20C (PET+15%),Precipitation+20%,LAI总体上变化不大,且空间变化呈现复杂性,总体上表现出草原植被LAI减少,而森林的LAI增加;Biome层次表现出针阔混交林和矮草原面积扩大,针叶林和森林草原面积减少,其中对于该情形下变化最为明显的是针叶林和森林草原。NECT东部区域发育在沙性土上的植被的LAI明显增加,而科尔沁沙地植被的LAI则维持不变。(2)T+40C (PET+30%),Precipitation+20%,LAI总体上将减小0.14,但空间分布不均。东部森林区域LA1将维持不变或增加(主要为针叶林),草原植被LAI仍表现出减少趋势;在Biome层次上则表现出草原面积的扩大。对于第一种情形下LAI有增有减的森林革原地区则表现出减小的一致性,总体来说,第二种情形比第一种情形表现出相当的干旱性。从对两种全球变化情形的反应来看,针叶林和森林草原是NECT中对全球变化驱动因子温度和降水的敏感植被类型;丽科尔沁沙地植被表现出相当的稳定性,表明该沙地的敏感性主要是由于人类活动这个因子造成的。
4.NECT中景观层次NPP模型的建立和预测 景观层次之所以成为模型研究中一个独特的层次,是由于地形效应的存在。地形效应对于水、热。营养物质的进行重新分配,从而进一步控制了生态系统的分布。本文选择NECT区域中森林生态系统的代表性分布小流域一二道白河小流域为研究区域。首先,应用Sunlight模型来模拟小流域任意一点所截取的能用于光合作用的太阳辐射能。Sunlight模型充分考虑了由于栅格的坡度、坡向和遮蔽度对可照时间和太阳直射辐射的影响以及坡度和可祝度对太阳散射辐射的影响,并提供了消除大气状况从站点观察数据推测的方法,即太阳直射辐射转换系数Rb和太阳散射辐射转换系数R,结合植被的分布特性,得到IPR在小流域中的分布。结果表明,IPR在小流域中相差不大,与高程呈正相关。进而利用温度修正模型得到温度修正系数,平均为0.446,表明温度对NPP的限制效应比较大;而水分修正系数则通过Topmodel模拟每一栅格的地下水位,由这个地下水位通过前述Waterbalance模型模拟均衡土壤水分剖面,进而求出水分修正系数,平均为0.86,表明该流域水分状况良好,水分状况对NPP的限制性不强。模拟结果显示:海拔
Resumo:
Photodegradation of three types of polyethylene twines namely, polyethylene fibrillated tape twine, polyethylene flat tape twine and polyethylene monofilament twines were studied by exposing them to sunlight and artificial UV radiation. The percentage residual strength varied in the samples, the monofilament with the highest residual strength followed by fibrillated tape twine and flat tape twine. A plot of the difference between the breaking strengths of the fibrillated tape twine and the mono filament twines against any given period of exposure exhibited a linear relationship
Resumo:
Zoea 2(Z SUB-2 ) Mysis 1 (M SUB-1 ) and Postlarva 1 (P SUB-1 ) of P. monodon artificially spawned in closed-system concrete hatchery tanks were bioassayed for their tolerance to the antibiotic furanace. The setup consisted of four 20-liter capacity plastic basins previously conditioned for 15 days with freshwater in full sunlight. During the experiment, each basin was filled with 5 liters of seawater to which was added filtered Chaetoceros and Brachionus to give densities of 5 . 0-7 . 5 x 10 SUP-4 cells/ml and 10-20 individuals/ml, respectively. The following are the properties of the water used throughout the experiments: salinity, 26-32%; pH, 7 . 3-8 . 4; temperature, 25-30 degree C; dissolved oxygen, 4 . 5-8 . 4 ppm; nitrite, 0 . 36-0 . 99 ppm; and ammonia, 0 . 10-0 . 30 ppm. To each basin were added 50 healthy larvae of specific stages of P. monodon. After an initial acclimation of one hour in the medium, preweighed amounts of the antibiotic were added and thoroughly dissolved. The concentrations tested were 1 . 0, 2 . 0 and 3 . 0 ppm. One basin always served as control. After 24 hours of exposure, the surviving population in each basin was counted. The survivors were then examined thoroughly under the microscope for unusual behavior and morphological defects brought about by the exposure. To minimize wide variations in the medium as a result of feeding and other manipulations, the systems were all prepared at 9:00 a.m. each time, and the feeds on two instances, one at 5:00 p.m. and another at 5:00 a.m. Fifteen trials conducted with Z SUB-2 showed survival ranges of 68% to 98% with a mean of 77 . 6% in the controls; 32% to 94% with a mean of 65 . 7% at 1 ppm, and 0% to 56% with a mean of 36 . 5% at 2 ppm. There were no survivors at 3 ppm. Interpolation from the survival-dose curve gave a 24-hr LC SUB-50 of approximately 1 . 6 ppm.
Resumo:
Four size groups of milkfish were tested, 4-18 g, 20-34 g, 35-95 g and 200-300 g. A number of fish from each group were placed separately in identical 1.2 m2 wooden tanks containing seawater filled up to 30 cm depth. The aggregate weight of fish per size group was approximately 1 kg. The fish were held for 72 h, fed with lab-lab and provided with continuous aeration to allow recovery from stress during transport and handling. After the recovery period, aeration was stopped and 200 g of the fine rice bran was spread over the water in each tank creating a film of bran particles on the water surface. This was designed to speed up depletion of dissolved oxygen considering the combined effects of the screening-off of sunlight, the reduction of air-water interface and the breakdown of the bran particles. It is probable that stress on milkfish in brackishwater ponds could start when oxygen level drops to about 1.4 ppm. A further decrease to 0.04 ppm could produce a total kill of all specimens above 4 grams with marketable size and bigger size fish dying first.
Resumo:
East African sun-dried fish infested by Dermestes maculatus were exposed to tropical sunlight at ambient temperature and analysed for insect mortality and weight losses. Solar treatment for 6 to 8 lo was highly effective for one layer of split sun-dried fish and 100% insect mortality was toted, while pest species were still present in the four layer batch. Weight losses between 1.2% and 10.2% were recorded, the top layer suffering the highest loss. The high surface temperature of 60°C caused fish to become brittle and quality losses occurred. A reduction in length of exposure/temperature is probably a presupposition for application of the method to local conditions.
Resumo:
Several agencies in the United Kingdom have interest in the water quality of old navigational canals that have fallen into disuse after the decline of commercial canal transportation. The interested agencies desired a model to predict the water quantity and quality of inland navigational canals in order to evaluate management options to address the issues in the natural streams to which they discharge. Inland navigational canals have unique drivers of their hydrology and water quality compared to either natural streams, irrigation canals, or larger navigational canals connected to seas or oceans. Water in an inland canal is typically sourced from a reservoir and artificially pumped to a summit reach; its movement downhill is controlled by the activity of boats and overflow weirs. Stagnant impoundments between locks, which might normally be expected to result in a decrease in the concentration of sediment-associated pollutants, actually have surprisingly high levels of sediment due to boat traffic. Algal growth in the stagnant reach can be high. This paper describes a canal model developed to simulate hydrology and water quality in inland navigational canals. This model was successfully applied to the Kennet and Avon Canal to predict hydrology, sediment generation and transport, and algal growth and transport. The model is responsive to external influences such as sunlight, temperature, nutrient concentrations, boat traffic, and runoff from the contributing catchment area.
Resumo:
We describe the microincrements, checks and annuli in the lapilli of the schizothoracine Ptychobarbus dipogon, an endemic species of the Tibetan plateau. We collected samples in the Yarlung Tsangpo River and its tributaries on a monthly basis (from April 2004 to August 2006). We describe the shape features of the three pairs of otoliths and document the full trajectory of lapillus development. We found that five to seven checks were clearly visible in the opaque zone of the first annulus. The pattern of 21-23 daily growth increments within each check might be explained as a lunar-induced deposition. We counted between 137 and 154 increments within the first annulus. Annuli appeared as a sequence of gradually declining increment widths, whereas false rings were characterized by abrupt checks. Our oldest estimates were 23(+)years for males and 44(+) for females. The time of annulus completion was clearly between March and April each year using monthly marginal increments analysis. We consider the factors responsible for daily increment formation as an endogenous circadian rhythm. Environmental information, such as strong sunlight and cold water temperatures in the Tibetan Plateau, could reinforce the endogenous daily cycle. Our results provided important data addressing the ecology and population dynamics of P. dipogon.
Resumo:
The effects of ultraviolet radiation (UVR 280-400 nm) on the germination of Porphyra haitanensis conchospores and on the growth and morphogenesis of the subsequent sporelings were investigated by culturing the released conchospores under natural sunlight from 29 September to 6 October 2005. Germination increased with time and was faster when UV-B was excluded using cut-off filters. There were significant negative effects of UV-B radiation on growth and cell division of sporelings, with decreases up to 18% for thallus length, between 6 and 18% for thallus width, up to 29% for thallus area, and between 6 and 14% for cell size as compared to PAR-controls. UV-A had a significant positive effect on morphogenesis, enhancing the formation of sporelings with cells dividing transversely; on the other hand, UV-B delayed the formation of such sporelings. We also tested the effects of solar UVR on the growth of P. haitanensis juveniles and found no significant effects. Our results indicate that UV-A has an important role in the germination and morphogenesis of the species, but on the other hand, sporelings of P. haitanensis are more sensitive to UV-B radiation than juveniles.
Resumo:
To study the impact of solar UV radiation (UVR) (280 to 400 nm) on the filamentous cyanobacterium Arthrospira (Spirulina) platensis, we examined the morphological changes and photosynthetic performance using an indoor-grown strain (which had not been exposed to sunlight for decades) and an outdoor-grown strain (which had been grown under sunlight for decades) while they were cultured with three solar radiation treatments: PAB (photosynthetically active radiation [PAR] plus UVR; 280 to 700 nm), PA (PAR plus UV-A; 320 to 700 nm), and P (PAR only; 400 to 700 nm). Solar UVR broke the spiral filaments of A. platensis exposed to full solar radiation in short-term low-cell-density cultures. This breakage was observed after 2 h for the indoor strain but after 4 to 6 h for the outdoor strain. Filament breakage also occurred in the cultures exposed to PAR alone; however, the extent of breakage was less than that observed for filaments exposed to full solar radiation. The spiral filaments broke and compressed when high-cell-density cultures were exposed to full solar radiation during long-term experiments. When UV-B was screened off, the filaments initially broke, but they elongated and became loosely arranged later (i.e., there were fewer spirals per unit of filament length). When UVR was filtered out, the spiral structure hardly broke or became looser. Photosynthetic 0, evolution in the presence of UVR was significantly suppressed in the indoor strain compared to the outdoor strain. UVR-induced inhibition increased with exposure time, and it was significantly lower in the outdoor strain. The concentration of UV-absorbing compounds was low in both strains, and there was no significant change in the amount regardless of the radiation treatment, suggesting that these compounds were not effectively used as protection against solar UVR. Self-shading, on the other hand, produced by compression of the spirals over adaptive time scales, seems to play an important role in protecting this species against deleterious UVR. Our findings suggest that the increase in UV-B irradiance due to ozone depletion not only might affect photosynthesis but also might alter the morphological development of filamentous cyanobacteria during acclimation or over adaptive time scales.
Resumo:
A highly efficient light-trapping structure, consisting of a diffractive grating, a distributed Bragg reflector (DBR) and a metal reflector was proposed. As an example, the proposed light-trapping structure with an indium tin oxide (ITO) diffraction grating, an a-Si:H/ITO DBR and an Ag reflector was optimized by the simulation via rigorous coupled-wave analysis (RCWA) for a 2.0-mu m-thick c-Si solar cell with an optimized ITO front antireflection (AR) layer under the air mass 1.5 (AM1.5) solar illumination. The weighted absorptance under the AM1.5 solar spectrum (A(AM1.5)) of the solar cell can reach to 69%, if the DBR is composed of 4 pairs of a-Si:H/ITOs. If the number of a-Si:H/ITO pairs is up to 8, a larger A(AM1.5) of 72% can be obtained. In contrast, if the Ag reflector is not adopted, the combination of the optimized ITO diffraction grating and the 8-pair a-Si:H/ITO DBR can only result in an A(AM1.5) of 68%. As the reference, A(AM1.5) = 31% for the solar cell only with the optimized ITO front AR layer. So, the proposed structure can make the sunlight highly trapped in the solar cell. The adoption of the metal reflector is helpful to obtain highly efficient light-trapping effect with less number of DBR pairs, which makes that such light-trapping structure can be fabricated easily.
Resumo:
Concentrated photovoltaic systems (CPVSs) draw more and more attention because of high photovoltaic conversion efficiency, low consumption of solar cell, and low cost of power generation. However, the fallibility of the tracker in such systems has hindered their practical application for more than twenty years. The tracker is indispensable for a CPVS since only normal-incident sunlight can be focused on the solar cell chips, even a slight deviation of incident light will result in a significant loss of solar radiation, and hence a distinct decrease in electricity output. Generally, the more accurate the tracker is, the more reliable the system is. However, it is not exactly the case for a CPVS reliability, because the more accurate the tracker is, the better environment it demands. A CPVS is usually has to subjected to harsh environmental conditions, such as strong wind, heavy rain or snow, and huge changes of temperature, which leads to the invalidation of the system's high-accuracy tracker. Hence, the reliability of a CPVS cannot be improved only by enhancing the tracker's accuracy. In this paper, a novel compound concentrator, combination of Fresnel lens and photo-funnel, has been adopted in a prototype CPVS. Test results show that the compound concentrator can relax the angle tolerance from one tenth to five degrees of arc at 400 suns, which can help a CPVS endure serious environment and remain its reliability over long period. The CPVS with compound concentrator is attractive for commercial application.
Resumo:
为外源5-氨基乙酰丙酸(ALA)在日光温室蔬菜上的应用提供科学依据。【方法】研究了不同浓度ALA处理对日光温室番茄生产的影响。【结果】ALA以及ALA+N叶面施用均明显提高了番茄植株株高、叶绿素相对含量和果实产量,并改善了番茄果实品质;与对照相比,外源ALA各处理植株株高、叶绿素相对含量和单株生物产量均有明显提高,其中D处理(ALA1号肥料第1次2 kg/hm2,第2~4次1 kg/hm2)效果最佳,植株株高、叶绿素相对含量及单株生物产量分别提高27.18%,17.75%和13.93%;外源ALA对番茄果实产量和品质也有明显的提高和改善作用,其中处理B(ALA1号肥料第1次0.5 kg/hm2,第2~4次0.3 kg/hm2)对果实产量效果最明显,处理E(ALA3号肥料第1次2.5 kg/hm2,第2~4次1.5 kg/hm2)对果实品质效果最佳。【结论】处理E(ALA3号肥料第1次2.5 kg/hm2,第2~4次1.5 kg/hm2)既有利于番茄生长发育,又能增加产量并改善品质,为最佳的ALA施用量及方法。
Resumo:
在人类活动导致全球变暖的前提下,由于全球气温的升高,地表水分加速向空中蒸发。从20世纪70年代至今,地球上严重干旱地区的面积几乎扩大了一倍。这一增长的一半可归因于气温升高而不是降雨量下降,因为实际上同期全球平均降水量还略有增长。干旱对陆地植物和农林生态系统产生深远影响,并已成为全球变化研究的一个重要方面。位于青藏高原东部的川西亚高山针叶林是研究气候变暖对陆地生态系统影响的重要森林类型。森林采伐迹地、人工林下和林窗环境作为目前该区人工造林和森林更新的重要生境,其截然不同的光环境对亚高山针叶林更新和森林动态有非常重要的影响。凋落物产生的化感物质可通过影响种子萌发和早期幼苗的定居而影响种群的建立和更新,而人工林和自然林物种以及更新速度的差异性也都受凋落物的影响。 云杉是川西亚高山针叶林群落的重要树种之一,在维持亚高山森林的景观格局和区域生态安全方面具有十分重要的作用,其自然更新能力及其影响机制一直是研究的热点问题。本试验以云杉种子和2年生幼苗为研究对象,从萌发、根尖形态、幼苗生长、光合作用、渗透调节和抗氧化能力等方面研究了不同光环境下水分亏缺和凋落物水浸液对云杉种子和幼苗生长的影响。旨在从更新的角度探讨亚高山针叶林自然更新的过程,其研究成果可在一定程度上为川西亚高山针叶林更新提供科学依据,同时也可为林业生产管理提供科学指导。主要研究结论如下: 水分亏缺在生长形态、光合作用、抗氧化能力、活性氧化对云杉幼苗都有显著影响。总体表现为,水分亏缺导致了云杉幼苗的高度、地径、单株总生物量降低,增加了地下部分的生长;水分亏缺显著降低了云杉叶片中相对含水量、光合色素、叶氮含量,净光合速率和最大量子产量(Fv/Fm),提高了幼苗叶片中膜脂过氧化产物(MDA)的含量;水分亏缺提高了幼苗叶片中过氧化氢(H2O2)含量,超氧荫离子(O2-)生成速率以及脯氨酸和抗氧化系统的活性(ASA, SOD, CAT, POD, APX和GR)。从这些结果可知,植物在遭受水分亏缺导致的伤害时,其自身会形成防御策略,并通过改变形态和生理方面的特性以减轻害。但是,这种自我保护机制依然不能抵抗严重水分亏缺对植物的伤害。 模拟林下低光照条件显著增加单株植物的地上部分生长,尤其是其叶片的比叶面积(叶面积/叶干重),同时其光合色素含量和叶片相对含水量也显著增加,这些改变直接导致植株光合速率和生物量的增加。同时,与高光照水平相比,低光照幼苗的膜脂过氧化产物(MDA)和活性氧物质均较低,显示出低光照比高光照水平对植物的更低的氧化伤害。尽管低光照也导致大部分抗氧化酶活性降低,但这正显示出植物遭受低的氧化伤害,更印证了前面的结论。 凋落物水浸液影响了云杉种子的萌发和根系的生长,更在形态、光合作用、抗氧化能力、活性氧物质以及叶氮水平上显著影响了云杉幼苗,其中,以人工纯林凋落物的影响更有强烈。具体表现在,种子萌发速率和萌发种子幼根的长度表现为对照>自然林处理>人工纯林;凋落物水浸液抑制种子分生区和伸长区的生长,人工林处理更降低了根毛区的生长,使根吸水分和养分困难。对2年生幼苗的影响主要表现在叶绿素含量、光合速率以及叶氮含量的降低;膜脂过氧化产物、活性氧物质和抗氧化酶系统的显著增加。同样的,人工纯林处理对云杉幼苗的影响显著于自然林处理。 在自然生态系统中,由于全球变暖气温升高导致的水分亏缺和森林凋落物都存在森林的砍伐迹地,林窗和林下环境中。我们的研究表明,与迹地或林窗强光照比较,林下的低光照环境由于为植物的生长营造了较为湿润的微环境,因此水分亏缺在林下对云杉幼苗造成的影响微弱。这可以从植物的形态、光合速率以及生物量积累,过氧化伤害和抗氧化酶系统表现出来。另一方面,凋落物水浸液在模拟林下低光照环境对植物的伤害也微弱于强光照环境,这与强光照环境高的水分散失导致环境水分亏缺有关;而人工纯林处理对云杉幼苗的伤害比对照和自然林处理显示出强烈的抑制作用。 Under the pre-condition of global warming resulted from intensive human activities, water in the earth’s surface rapidly evaporates due to the increase of global air temperature. From 1970s up to now, the area of serious drought in the world is almost twice as ever. This increase might be due to the increasing air temperature and not decreasing rainfall because global average rainfall in the corresponding period slightly is incremental. Drought will have profound impacts on terrestrial and agriculture-forest system and has also become the important issue of global change research. The subalpine coniferous forests in the eastern Qinghai-Tibet Plateau provide a natural laboratory for the studying the effects of global warming on terrestrial ecosystems. The light environment significantly differs among cutting blanks, forest gap and understory, which is particularly important for plant regeneration and forest dynamics in the subalpine coniferous forests. Picea asperata is one of the keystone species of subalpine coniferouis forests in western China, and it is very important in preserving landscape structure and regional ecological security of subalpine forests. The natural regeneration capacities and influence mechanism of Picea asperata are always the hot topics. In the present study, the short-term effects of two light levels (100% of full sunlight and 15% of full sunlight), two watering regimes (100% of field capacity and 30% of field capacity), two litter aqueous extracts (primitive forest and plantation aqueous extracts) on the seed germination, early growth and physiological traits of Picea asperata were determined in the laboratory and natural greenhouse. The present study was undertaken so as to give a better understanding of the regeneration progress affected by water deficit, low light and litter aqueous extracts. Our results could provide insights into the effects of climate warming on community composition and regeneration behavior for the subalpine coniferous forest ecosystem processes, and provide scientific direction for the forest production and management. Water deficit had significant effects on growth, morphological, physiological and biochemical traits of Picea asperata seedlings. Water deficit resulted in the decrease in height, basal diameter, total biomass and increase in under-ground development; water deficit significantly reduced the needle relative water content, photosynthetic pigments, needle nitrogen concentration, net photosynthetic rate and the maximum potential quantum yield of photosynthesis (Fv/Fm), and increased the degree of lipid peroxidation (MDA) in Picea asperata seedlings; water deficit also increased the rate of superoxide radical (O2-) production, hydrogen peroxide (H2O2) content, free proline content and the activities of antioxidant systems (ASA, SOD, POD, CAT, APX and GR) in Picea asperata seedlings. These results indicated that some protective mechanism was formed when plants suffered from drought stress, but the protection could not counteract the harm resulting from the serious drought stress on them. Low light in the understory significantly increased seedling above-ground development, especially the species leaf area (SLA), and photosynthetic pigments and relative needle content. These changes resulted in the increase in net photosynthetic rate and total biomass. Moreover, the lower MDA content and active oxygen species (AOS) (H2O2 and O2-) in low light seedlings suggested that low light had weaker oxidative damage as compared to high light. Lower antioxidant enzymes activities in low light seedlings indicated the weaker oxidative damage on Picea asperata seedlings than high light seedlings, which was correlative with the changes in MDA and AOS. Litter aqueous extracts affected seed germination and root system of Picea asperata seedlings. Significant changes in growth, photosynthesis, antioxidant activities, active oxygen species and leaf nitrogen concentration were also found in Picea asperata seedlings, and plantation treatment showed the stronger effects on these traits than those in control and primitive forest treatment. The present results indicated that seed germination and radicle length parameters in control were superior to those in primitive forest treatment, and those of primitive forest treatment were superior to plantation treatment; litter aqueous extracts inhibited the meristematic and elongation zone, and plantation treatment caused a decrease in root hairs so as to be difficult in absorbing water and nutrient in root system. On the other hand, litter aqueous extracts significantly decreased chlorophyll content, net photosynthetic rate and leaf nitrogen concentration of Picea asperata seedlings; MDA, AOS and antioxidant system activities were significantly increased in Picea asperata seedlings. Similarly, plantation treatment had more significant effect on Picea asperata seedlings as compared to primitive forest treatment. In the nature ecosystem, water deficit resulted from elevating air temperature and litter aqueous extract may probably coexist in the cutting blank, forest gap and understory. Our present study showed that water deficit had weaker effects on low light seedlings in the understory as compared to high light seedlings in the cutting blank and forest gap. The fact was confirmed from seedlings growth, gas exchange and biomass accumulation, peroxidation and antioxidant systems. This might be due to that low light-reduced leaf and air temperatures, vapour-pressure deficit, and the oxidative stresses can aggravate the impact of drought under higher light. On the other hand, litter aqueous extracts in the low light had weaker effects on the Picea asperata seedlings than those at high light level, which might be correlative to the water evapotranspiration under high light. Moreover, plantation litter aqueous extracts showed stronger inhibition for seed germination and seedling growth than control and primitive forest treatments.