995 resultados para structural restoration


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some minerals are colloidal and show no X-ray diffraction patterns. Vibrational spectroscopy offers one of the few methods for the assessment of the structure of these types of mineral. Among this group of minerals is pitticite simply described as Fe, AsO4, SO4, H2O. The objective of this research is to determine the molecular structure of the mineral pitticite using vibrational spectroscopy. Raman microscopy offers a useful method for the analysis of such colloidal minerals. Raman and infrared bands are attributed to the , and water stretching vibrations. The Raman spectrum is dominated by a very intense sharp band at 983 cm−1 assigned to the symmetric stretching mode. A strong Raman band at 1041 cm−1 is observed and is assigned to the antisymmetric stretching mode. Low intensity Raman bands at 757 and 808 cm−1 may be assigned to the antisymmetric and symmetric stretching modes. Raman bands observed at 432 and 465 cm−1 are attributable to the doubly degenerate ν2(SO4)2- bending mode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sericin and fibroin are the two major proteins in the silk fibre produced by the domesticated silkworm, Bombyx mori. Fibroin has been extensively investigated as a biomaterial. We have previously shown that fibroin can function successfully as a substratum for growing cells of the eye. Sericin has been so far neglected as a biomaterial because of suspected allergenic activity. However, this misconception has now been dispelled, and sericin’s biocompatibility is currently indisputable. Aiming at promoting sericin as a possible substratum for the growth of corneal cells in order to make tissue-engineered constructs for the restoration of the ocular surface, in this study we investigated the attachment and growth in vitro of human corneal limbal epithelial cells (HLECs) on sericin-based membranes. Sericin was isolated and regenerated from the silkworm cocoons by an aqueous procedure, manufactured into membranes, and characterized (mechanical properties, structural analysis, contact angles). Primary cell cultures from two donors were established in serum-supplemented media in the presence of murine feeder cells. Membranes made of sericin and fibroin-sericin blends were assessed in vitro as substrata for HLECs in a serum-free medium, in a cell attachment assay and in a 3-day cell growth experiment. While the mechanical characteristics of sericin were found to be inferior to those of fibroin, its ability to enhance the attachment of HLECs was significantly superior to fibroin, as revealed by the PicoGreen® assay. Evidence was also obtained that cells can grow and differentiate on these substrata.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper illustrates the damage identification and condition assessment of a three story bookshelf structure using a new frequency response functions (FRFs) based damage index and Artificial Neural Networks (ANNs). A major obstacle of using measured frequency response function data is a large size input variables to ANNs. This problem is overcome by applying a data reduction technique called principal component analysis (PCA). In the proposed procedure, ANNs with their powerful pattern recognition and classification ability were used to extract damage information such as damage locations and severities from measured FRFs. Therefore, simple neural network models are developed, trained by Back Propagation (BP), to associate the FRFs with the damage or undamaged locations and severity of the damage of the structure. Finally, the effectiveness of the proposed method is illustrated and validated by using the real data provided by the Los Alamos National Laboratory, USA. The illustrated results show that the PCA based artificial Neural Network method is suitable and effective for damage identification and condition assessment of building structures. In addition, it is clearly demonstrated that the accuracy of proposed damage detection method can also be improved by increasing number of baseline datasets and number of principal components of the baseline dataset.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Damage detection in structures has become increasingly important in recent years. While a number of damage detection and localization methods have been proposed, very few attempts have been made to explore the structure damage with noise polluted data which is unavoidable effect in real world. The measurement data are contaminated by noise because of test environment as well as electronic devices and this noise tend to give error results with structural damage identification methods. Therefore it is important to investigate a method which can perform better with noise polluted data. This paper introduces a new damage index using principal component analysis (PCA) for damage detection of building structures being able to accept noise polluted frequency response functions (FRFs) as input. The FRF data are obtained from the function datagen of MATLAB program which is available on the web site of the IASC-ASCE (International Association for Structural Control– American Society of Civil Engineers) Structural Health Monitoring (SHM) Task Group. The proposed method involves a five-stage process: calculation of FRFs, calculation of damage index values using proposed algorithm, development of the artificial neural networks and introducing damage indices as input parameters and damage detection of the structure. This paper briefly describes the methodology and the results obtained in detecting damage in all six cases of the benchmark study with different noise levels. The proposed method is applied to a benchmark problem sponsored by the IASC-ASCE Task Group on Structural Health Monitoring, which was developed in order to facilitate the comparison of various damage identification methods. The illustrated results show that the PCA-based algorithm is effective for structural health monitoring with noise polluted FRFs which is of common occurrence when dealing with industrial structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There has been much written about the Internet’s potential to enhance international market growth opportunities for SME’s. However, the literature is vague as to how Internet usage and the application of Internet marketing also known as Internet marketing intensity has an impact on firm international market growth. This paper examines the level and role of the Internet in the international operations of a sample of 218 Australian SMEs with international customers. This study shows evidence of a statistical relationship between Internet usage and Internet marketing intensity, which in turn leads to international market growth, in terms of increased sales from new customers in new countries, new customers in existing countries and from existing customers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the formulation for the free vibration of joined conical-cylindrical shells with uniform thickness using the transfer of influence coefficient for identification of structural characteristics. These characteristics are importance for structural health monitoring to develop model. This method was developed based on successive transmission of dynamic influence coefficients, which were defined as the relationships between the displacement and the force vectors at arbitrary nodal circles of the system. The two edges of the shell having arbitrary boundary conditions are supported by several elastic springs with meridional/axial, circumferential, radial and rotational stiffness, respectively. The governing equations of vibration of a conical shell, including a cylindrical shell, are written as a coupled set of first order differential equations by using the transfer matrix of the shell. Once the transfer matrix of a single component has been determined, the entire structure matrix is obtained by the product of each component matrix and the joining matrix. The natural frequencies and the modes of vibration were calculated numerically for joined conical-cylindrical shells. The validity of the present method is demonstrated through simple numerical examples, and through comparison with the results of previous researchers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As civil infrastructures such as bridges age, there is a concern for safety and a need for cost-effective and reliable monitoring tool. Different diagnostic techniques are available nowadays for structural health monitoring (SHM) of bridges. Acoustic emission is one such technique with potential of predicting failure. The phenomenon of rapid release of energy within a material by crack initiation or growth in form of stress waves is known as acoustic emission (AE). AEtechnique involves recording the stress waves bymeans of sensors and subsequent analysis of the recorded signals,which then convey information about the nature of the source. AE can be used as a local SHM technique to monitor specific regions with visible presence of cracks or crack prone areas such as welded regions and joints with bolted connection or as a global technique to monitor the whole structure. Strength of AE technique lies in its ability to detect active crack activity, thus helping in prioritising maintenance work by helping focus on active cracks rather than dormant cracks. In spite of being a promising tool, some challenges do still exist behind the successful application of AE technique. One is the generation of large amount of data during the testing; hence an effective data analysis and management is necessary, especially for long term monitoring uses. Complications also arise as a number of spurious sources can giveAEsignals, therefore, different source discrimination strategies are necessary to identify genuine signals from spurious ones. Another major challenge is the quantification of damage level by appropriate analysis of data. Intensity analysis using severity and historic indices as well as b-value analysis are some important methods and will be discussed and applied for analysis of laboratory experimental data in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent times, light gauge steel framed (LSF) structures, such as cold-formed steel wall systems, are increasingly used, but without a full understanding of their fire performance. Traditionally the fire resistance rating of these load-bearing LSF wall systems is based on approximate prescriptive methods developed based on limited fire tests. Very often they are limited to standard wall configurations used by the industry. Increased fire rating is provided simply by adding more plasterboards to these walls. This is not an acceptable situation as it not only inhibits innovation and structural and cost efficiencies but also casts doubt over the fire safety of these wall systems. Hence a detailed fire research study into the performance of LSF wall systems was undertaken using full scale fire tests and extensive numerical studies. A new composite wall panel developed at QUT was also considered in this study, where the insulation was used externally between the plasterboards on both sides of the steel wall frame instead of locating it in the cavity. Three full scale fire tests of LSF wall systems built using the new composite panel system were undertaken at a higher load ratio using a gas furnace designed to deliver heat in accordance with the standard time temperature curve in AS 1530.4 (SA, 2005). Fire tests included the measurements of load-deformation characteristics of LSF walls until failure as well as associated time-temperature measurements across the thickness and along the length of all the specimens. Tests of LSF walls under axial compression load have shown the improvement to their fire performance and fire resistance rating when the new composite panel was used. Hence this research recommends the use of the new composite panel system for cold-formed LSF walls. The numerical study was undertaken using a finite element program ABAQUS. The finite element analyses were conducted under both steady state and transient state conditions using the measured hot and cold flange temperature distributions from the fire tests. The elevated temperature reduction factors for mechanical properties were based on the equations proposed by Dolamune Kankanamge and Mahendran (2011). These finite element models were first validated by comparing their results with experimental test results from this study and Kolarkar (2010). The developed finite element models were able to predict the failure times within 5 minutes. The validated model was then used in a detailed numerical study into the strength of cold-formed thin-walled steel channels used in both the conventional and the new composite panel systems to increase the understanding of their behaviour under nonuniform elevated temperature conditions and to develop fire design rules. The measured time-temperature distributions obtained from the fire tests were used. Since the fire tests showed that the plasterboards provided sufficient lateral restraint until the failure of LSF wall panels, this assumption was also used in the analyses and was further validated by comparison with experimental results. Hence in this study of LSF wall studs, only the flexural buckling about the major axis and local buckling were considered. A new fire design method was proposed using AS/NZS 4600 (SA, 2005), NAS (AISI, 2007) and Eurocode 3 Part 1.3 (ECS, 2006). The importance of considering thermal bowing, magnified thermal bowing and neutral axis shift in the fire design was also investigated. A spread sheet based design tool was developed based on the above design codes to predict the failure load ratio versus time and temperature for varying LSF wall configurations including insulations. Idealised time-temperature profiles were developed based on the measured temperature values of the studs. This was used in a detailed numerical study to fully understand the structural behaviour of LSF wall panels. Appropriate equations were proposed to find the critical temperatures for different composite panels, varying in steel thickness, steel grade and screw spacing for any load ratio. Hence useful and simple design rules were proposed based on the current cold-formed steel structures and fire design standards, and their accuracy and advantages were discussed. The results were also used to validate the fire design rules developed based on AS/NZS 4600 (SA, 2005) and Eurocode Part 1.3 (ECS, 2006). This demonstrated the significant improvements to the design method when compared to the currently used prescriptive design methods for LSF wall systems under fire conditions. In summary, this research has developed comprehensive experimental and numerical thermal and structural performance data for both the conventional and the proposed new load bearing LSF wall systems under standard fire conditions. Finite element models were developed to predict the failure times of LSF walls accurately. Idealized hot flange temperature profiles were developed for non-insulated, cavity and externally insulated load bearing wall systems. Suitable fire design rules and spread sheet based design tools were developed based on the existing standards to predict the ultimate failure load, failure times and failure temperatures of LSF wall studs. Simplified equations were proposed to find the critical temperatures for varying wall panel configurations and load ratios. The results from this research are useful to both structural and fire engineers and researchers. Most importantly, this research has significantly improved the knowledge and understanding of cold-formed LSF loadbearing walls under standard fire conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Young novice drivers constitute a major public health concern due to the number of crashes in which they are involved, and the resultant injuries and fatalities. Previous research suggests psychological traits (reward sensitivity, sensation seeking propensity), and psychological states (anxiety, depression) influence their risky behaviour. The relationships between gender, anxiety, depression, reward sensitivity, sensation seeking propensity and risky driving are explored. Participants (390 intermediate drivers, 17-25 years) completed two online surveys at a six month interval. Surveys comprised sociodemographics, Brief Sensation Seeking Scale, Kessler’s Psychological Distress Scale, an abridged Sensitivity to Reward Questionnaire, and risky driving behaviour was measured by the Behaviour of Young Novice Drivers Scale. Structural equation modelling revealed anxiety, reward sensitivity and sensation seeking propensity predicted risky driving. Gender was a moderator, with only reward sensitivity predicting risky driving for males. Future interventions which consider the role of rewards, sensation seeking, and mental health may contribute to improved road safety for younger and older road users alike.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human activity-induced vibrations in slender structural sys tems become apparent in many different excitation modes and consequent action effects that cause discomfort to occupants, crowd panic and damage to public infrastructure. Resulting loss of public confidence in safety of structures, economic losses, cost of retrofit and repairs can be significant. Advanced computational and visualisation techniques enable engineers and architects to evolve bold and innovative structural forms, very often without precedence. New composite and hybrid materials that are making their presence in structural systems lack historical evidence of satisfactory performance over anticipated design life. These structural systems are susceptible to multi-modal and coupled excitation that are very complex and have inadequate design guidance in the present codes and good practice guides. Many incidents of amplified resonant response have been reported in buildings, footbridges, stadia a nd other crowded structures with adverse consequences. As a result, attenuation of human-induced vibration of innovative and slender structural systems very ofte n requires special studies during the design process. Dynamic activities possess variable characteristics and thereby induce complex responses in structures that are sensitive to parametric variations. Rigorous analytical techniques are available for investigation of such complex actions and responses to produce acceptable performance in structural systems. This paper presents an overview and a critique of existing code provisions for human-induced vibration followed by studies on the performance of three contrasting structural systems that exhibit complex vibration. The dynamic responses of these systems under human-induced vibrations have been carried out using experimentally validated computer simulation techniques. The outcomes of these studies will have engineering applications for safe and sustainable structures and a basis for developing design guidance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Denaturation of tissues can provide a unique biological environment for regenerative medicine application only if minimal disruption of their microarchitecture is achieved during the decellularization process. The goal is to keep the structural integrity of such a construct as functional as the tissues from which they were derived. In this work, cartilage-on-bone laminates were decellularized through enzymatic, non-ionic and ionic protocols. This work investigated the effects of decellularization process on the microarchitecture of cartiligous extracellular matrix; determining the extent of how each process deteriorated the structural organization of the network. High resolution microscopy was used to capture cross-sectional images of samples prior to and after treatment. The variation of the microarchitecture was then analysed using a well defined fast Fourier image processing algorithm. Statistical analysis of the results revealed how significant the alternations among aforementioned protocols were (p < 0.05). Ranking the treatments by their effectiveness in disrupting the ECM integrity, they were ordered as: Trypsin> SDS> Triton X-100.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

IR radiation has been studied for micro-organism inactivation of bacterial spores on metal substrates [1] and on metal and paper substrates [2]. A near-point near infrared laser water treatment apparatus for use in dental hand-pieces was also developed [3]. To date water sterilisation research using a mid-IR laser technique is very rare. According to the World Health Organisation [4], examinations for faecal indicator bacteria remain the most sensitive and specific way of assessing the hygienic quality of water. Bacteria that fall into this group are E. coli, other coliform bacteria (including E. cloacae) and to a lesser extent, faecal streptococci [5]. Protozoan cysts from organisms which cause giardiasis are the most frequently identified cause of waterborne diseases in developed countries [6,7]. The use of aerobic bacterial endospores to monitor the efficiency of various water treatments has been shown to provide a reliable and simple indicator of overall performance of water treatment[8,9].The efficacy of IR radiation for water disinfection compared to UV treatment has been further investigated in the present study. In addition FTIR spectroscopy in conjunction with Principle Component Analysis was used to characterise structural changes within the bacterial cells and endospores following IR laser treatment. Changes in carbohydrate content of E. cloacae following IR laser treatment were observed.