193 resultados para stony meteorites
Resumo:
Context. The Sun shows abundance anomalies relative to most solar twins. If the abundance peculiarities are due to the formation of inner rocky planets, that would mean that only a small fraction of solar type stars may host terrestrial planets. Aims. In this work we study HIP 56948, the best solar twin known to date, to determine with an unparalleled precision how similar it is to the Sun in its physical properties, chemical composition and planet architecture. We explore whether the abundances anomalies may be due to pollution from stellar ejecta or to terrestrial planet formation. Methods. We perform a differential abundance analysis (both in LTE and NLTE) using high resolution (R similar to 100 000) high S/N (600-650) Keck HIRES spectra of the Sun (as reflected from the asteroid Ceres) and HIP 56948. We use precise radial velocity data from the McDonald and Keck observatories to search for planets around this star. Results. We achieve a precision of sigma less than or similar to 0.003 dex for several elements. Including errors in stellar parameters the total uncertainty is as low as sigma similar or equal to 0.005 dex (1%), which is unprecedented in elemental abundance studies. The similarities between HIP 56948 and the Sun are astonishing. HIP 56948 is only 17 +/- 7 K hotter than the Sun, and log g, [Fe/H] and microturbulence velocity are only +0.02 +/- 0.02 dex, +0.02 +/- 0.01 dex and +0.01 +/- 0.01 km s(-1) higher than solar, respectively. Our precise stellar parameters and a differential isochrone analysis shows that HIP 56948 has a mass of 1.02 +/- 0.02 M-circle dot and that it is similar to 1 Gyr younger than the Sun, as constrained by isochrones, chromospheric activity, Li and rotation. Both stars show a chemical abundance pattern that differs from most solar twins, but the refractory elements (those with condensation temperature T-cond greater than or similar to 1000 K) are slightly (similar to 0.01 dex) more depleted in the Sun than in HIP 56948. The trend with T-cond in differential abundances (twins -HIP 56948) can be reproduced very well by adding similar to 3 M-circle plus of a mix of Earth and meteoritic material, to the convection zone of HIP 56948. The element-to-element scatter of the Earth/meteoritic mix for the case of hypothetical rocky planets around HIP 56948 is only 0.0047 dex. From our radial velocity monitoring we find no indications of giant planets interior to or within the habitable zone of HIP 56948. Conclusions. We conclude that HIP 56948 is an excellent candidate to host a planetary system like our own, including the possible presence of inner terrestrial planets. Its striking similarity to the Sun and its mature age makes HIP 56948 a prime target in the quest for other Earths and SETI endeavors.
Resumo:
Abstract Background ADAMTS-1 (a disintegrin and metalloprotease with thrombospondin motifs) is a member of the ADAMTS family of metalloproteases. Here, we investigated mRNA and protein levels of ADAMTS-1 in normal and neoplastic tissues using qPCR, immunohistochemistry and immunoblot analyses, and we addressed the role of ADAMTS-1 in regulating migration, invasion and invadopodia formation in breast tumor cell lines. Results In a series of primary breast tumors, we observed variable levels of ADAMTS-1 mRNA expression but lower levels of ADAMTS-1 protein expression in human breast cancers as compared to normal tissue, with a striking decrease observed in high-malignancy cases (triple-negative for estrogen, progesterone and Her-2). This result prompted us to analyze the effect of ADAMTS-1 knockdown in breast cancer cells in vitro. MDA-MB-231 cells with depleted ADAMTS-1 expression demonstrated increased migration, invasion and invadopodia formation. The regulatory mechanisms underlying the effects of ADAMTS-1 may be related to VEGF, a growth factor involved in migration and invasion. MDA-MB-231 cells with depleted ADAMTS-1 showed increased VEGF concentrations in conditioned medium capable of inducing human endothelial cells (HUVEC) tubulogenesis. Furthermore, expression of the VEGF receptor (VEGFR2) was increased in MDA-MB-231 cells as compared to MCF7 cells. To further determine the relationship between ADAMTS-1 and VEGF regulating breast cancer cells, MDA-MB-231 cells with reduced expression of ADAMTS-1 were pretreated with a function-blocking antibody against VEGF and then tested in migration and invasion assays; both were partially rescued to control levels. Conclusions ADAMTS-1 expression was decreased in human breast tumors, and ADAMTS-1 knockdown stimulated migration, invasion and invadopodia formation in breast cancer cells in vitro. Therefore, this series of experiments suggests that VEGF is involved in the effects mediated by ADAMTS-1 in breast cancer cells.
Resumo:
Zusammenfassung - Die vorliegende Dissertation beschreibt die massenspektrometrische Bestimmung der Edelgaskonzentrationen und -isotopenverhältnisse von insgesamt 47 Enstatit-Chondriten (E-Chondriten). E-Chondrite bilden eine Meteoritengruppe, die sich durch einen hohen Reduktionsgrad auszeichnet. Es gibt Hinweise darauf, dass sie im inneren Bereich des Sonnensystems entstanden. Ihre chemischen und mineralogischen Eigenschaften können daher auch Aufschluss über die Genese der terrestrischen Planeten geben. Die Edelgasmessungen hatten im wesentlichen die Berechnung von Bestrahlungsaltern sowie die Untersuchung der getrappten Edelgaskomponenten zum Ziel. Die Bestrahlungsalter der E-Chondrite liegen zwischen 0.5 und 50 Millionen Jahren. Eine zweifelsfreie Aussage über Häufungen in der Altersverteilung, die auf große Impaktereignisse auf dem Mutterkörper hinweisen könnten, lässt sich aufgrund der relativ hohen Unsicherheit der Alter (20 Prozent) nicht treffen.Etwa 10 Prozent der E-Chondrite enthalten signifikante solare Gasanteile. Alle zählen zum nicht-equilibrierten petrologischen Typ 3.In der elementaren Zusammensetzung der getrappten schweren Edelgase fällt auf, dass EH3-Chondrite (H für high iron) vorrangig ein stärker fraktioniertes (planetares), relativ Ar-armes Edelgasmuster aufweisen, während alle übrigen Typen E4-6 von einer sog. subsolaren, relativ Ar-reichen Signatur dominiert werden. Diese Verteilung und Zusammensetzung lassen sich nicht ohne weiteres mit dem Modell zur Entstehung der petrologischen Typen durch Metamorphose, wie es für die gewöhnlichen Chondrite formuliert wurde, erklären.
Resumo:
The weathering of Fe-bearing minerals under extraterrestrial conditions was investigated by Mössbauer (MB) spectroscopy to gain insights into the role of water on the planet Mars. The NASA Mars Exploration Rovers Spirit and Opportunity each carry a miniaturized Mössbauer spectrometer MIMOS II for the in situ investigation of Martian soils and rocks as part of their payload. The MER flight instruments had to be modified in order to work over the Martian diurnal temperature range (180 K – 290 K) and within the unique electronic environment of the rovers. The modification required special calibration procedures. The integration time necessary to obtain a good quality Mössbauer spectrum with the MIMOS II flight instruments was reduced by 30 % through the design of a new collimator. The in situ investigation of rocks along the rover Spirit's traverse in Gusev crater revealed weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills. Correlation plots of primary Fe-bearing minerals identified by MB spectroscopy such as olivine versus secondary Fe-bearing phases such as nanophase Fe oxides showed that olivine is the mineral which is primarily involved in weathering reactions. This argues for a reduced availability of water. Identification of the Fe-oxyhydroxide goethite in the Columbia Hills is unequivocal evidence for aqueous weathering processes in the Columbia Hills. Experiments in which mineral powders were exposed to components of the Martian atmosphere showed that interaction with the atmosphere alone, in the absence of liquid water, is sufficient to oxidize Martian surface materials. The fine-grained dust suspended in the Martian atmosphere may have been altered solely by gas-solid reactions. Fresh and altered specimens of Martian meteorites were investigated with MIMOS II. The study of Martian meteorites in the lab helped to identify in Bounce Rock the first rock on Mars which is similar in composition to basaltic shergottites, a subgroup of the Martian meteorites. The field of astrobiology includes the study of the origin, evolution and distribution of life in the universe. Water is a prerequisite for life. The MER Mössbauer spectrometers identified aqueous minerals such as jarosite and goethite. The identification of jarosite was crucial to evaluate the habitability of Opportunity's landing site at Meridiani Planum during the formation of the sedimentary outcrop rocks, because jarosite puts strong constrains on pH levels. The identification of olivine in rocks and soils on the Gusev crater plains provide evidence for the sparsity of water under current conditions on Mars. Ratios of Fe2+/Fe3+ were obtained with Mössbauer spectroscopy from basaltic glass samples which were exposed at a deep sea hydrothermal vent. The ratios were used as a measure of potential energy for use by a microbial community. Samples from Mars analogue field sites on Earth exhibiting morphological biosignatures were also investigated.
Resumo:
Neben astronomischen Beobachtungen mittels boden- und satellitengestützer Instrumente existiert ein weiterer experimenteller Zugang zu astrophysikalischen Fragestellungen in Form einer Auswahl extraterrestrischen Materials, das für Laboruntersuchungen zur Verfügung steht. Hierzu zählen interplanetare Staubpartikel, Proben, die von Raumfahrzeugen zur Erde zurückgebracht wurden und primitive Meteorite. Von besonderem Interesse sind sog. primitive kohlige Chondrite, eine Klasse von Meteoriten, die seit ihrer Entstehung im frühen Sonnensystem kaum verändert wurden. Sie enthalten neben frühem solarem Material präsolare Minerale, die in Sternwinden von Supernovae und roten Riesensternen kondensiert sind und die Bildung unseres Sonnensystems weitgehend unverändert überstanden haben. Strukturelle, chemische und isotopische Analysen dieser Proben besitzen demnach eine große Relevanz für eine Vielzahl astrophysikalischer Forschungsgebiete. Im Rahmen der vorliegenden Arbeit wurden Laboranalysen mittels modernster physikalischer Methoden an Bestandteilen primitiver Meteorite durchgeführt. Aufgrund der Vielfalt der zu untersuchenden Eigenschaften und der geringen Größen der analysierten Partikel zwischen wenigen Nanometern und einigen Mikrometern mussten hierbei hohe Anforderungen an Nachweiseffizienz und Ortsauflösung gestellt werden. Durch die Kombination verschiedener Methoden wurde ein neuer methodologischer Ansatz zur Analyse präsolarer Minerale (beispielsweise SiC) entwickelt. Aufgrund geringer Mengen verfügbaren Materials basiert dieses Konzept auf der parallelen nichtdestruktiven Vorcharakterisierung einer Vielzahl präsolarer Partikel im Hinblick auf ihren Gehalt diagnostischer Spurenelemente. Eine anschließende massenspektrometrische Untersuchung identifizierter Partikel mit hohen Konzentrationen interessanter Elemente ist in der Lage, Informationen zu nukleosynthetischen Bedingungen in ihren stellaren Quellen zu liefern. Weiterhin wurden Analysen meteoritischer Nanodiamanten durchgeführt, deren geringe Größen von wenigen Nanometern zu stark modifizierten Festkörpereigenschaften führen. Im Rahmen dieser Arbeit wurde eine quantitative Beschreibung von Quanteneinschluss-Effekten entwickelt, wie sie in diesen größenverteilten Halbleiter-Nanopartikeln auftreten. Die abgeleiteten Ergebnisse besitzen Relevanz für nanotechnologische Forschungen. Den Kern der vorliegenden Arbeit bilden Untersuchungen an frühen solaren Partikeln, sog. refraktären Metall Nuggets (RMN). Mit Hilfe struktureller, chemischer und isotopischer Analysen, sowie dem Vergleich der Ergebnisse mit thermodynamischen Rechnungen, konnte zum ersten Mal ein direkter Nachweis von Kondensationsprozessen im frühen solaren Nebel erbracht werden. Die analysierten RMN gehören zu den ersten Festkörperkondensaten, die im frühen Sonnensystem gebildet wurden und scheinen seit ihrer Entstehung nicht durch sekundäre Prozesse verändert worden zu sein. Weiterhin konnte erstmals die Abkühlrate des Gases des lokalen solaren Nebels, in dem die ersten Kondensationsprozesse stattfanden, zu 0.5 K/Jahr bestimmt werden, wodurch ein detaillierter Blick in die thermodynamische Geschichte des frühen Sonnensystems möglich wird. Die extrahierten Parameter haben weitreichende Auswirkungen auf die Modelle der Entstehung erster solarer Festkörper, welche die Grundbausteine der Planetenbildung darstellen.
Resumo:
The two Mars Exploration Rovers (MER), Spirit and Opportunity, landed on the Martian surface in January 2004 and have since collected a wealth of information about their landing sites. As part of their payload, the miniaturised Mössbauer spectrometer MIMOS II contributes to the success of the mission by identifying Iron-bearing minerals and by determining Iron oxidation states in them. The basis of this work is the data set obtained at Opportunity’s landing site at Meridiani Planum. A portion of this data set is evaluated with different methods, with the aim to thoroughly characterize lithologic components at Meridiani Planum and possible relations between them.rnMIMOS II is able to measure Mössbauer spectra at different energies simultaneously, bearing information from different sampling depths of the investigated target. The ability of depth-selective Mössbauer spectroscopy to characterize weathered surface layers is illustrated through its application to two suitable rock targets that were investigated on Mars. In both cases, an enhanced concentration of Iron oxides at the rock surface was detected, pointing to a low degree of aqueous alteration. rnThe mineral hematite (α-Fe2O3) is present in the matrix of outcrop rocks and in spherules weathering from the outcrop. Simultaneous fitting of Mössbauer spectra was applied to data sets obtained on both target types to characterize the hematite component in detail. This approach reveals that two hematite populations are present, both in the outcrop matrix as well as in spherules. The hematite component with a comparably high degree of crystallinity and/or chemical purity is present in the outcrop matrix. The investigation of hematite at Meridiani Planum has shown that simultaneous fitting is a suitable and useful method to evaluate a large, correlated set of Mössbauer spectra.rnOpportunity encountered loose, cm-sized rocks along its traverse. Based on their composition and texture, these “cobbles” can be divided into three different groups. Outcrop fragments are impact-derived ejecta from local outcrop rocks. Cobbles of meteoritic origin contain the minerals kamacite (Fe,Ni) and troilite (FeS) and exhibit high Ni contents. Melt-bearing impact breccias bear similarities to local outcrop rocks and basaltic soil, with a phase composition and texture consistent with a formation scenario involving partial melting and inclusion of small, bright outcrop clasts. rnIron meteorites on the Martian surface experience weathering through the presence of even trace amounts of water due to their metallic nature. Opportunity encountered and investigated four Iron meteorites, which exhibit evidence for physical and chemical weathering. Discontinuous coatings contain Iron oxides, pointing to the influence of limited amounts of water. rnA terrestrial analogue site for Meridiani Planum is the Rio Tinto basin in south-west Spain. With its deposits of sulfate- and iron-oxide-bearing minerals, the region provides an adequate test bed for instrumentation for future Mars missions. In-situ investigations at Rio Tinto were carried out with a special focus on the combined use of Mössbauer spectroscopy with MIMOS II and Raman spectroscopy with a field-portable instrument. The results demonstrate that the two instruments provide complementary information about investigated samples.
Resumo:
Primitive kohlige Chondrite sind Meteorite, die seit ihrer Entstehung im frühen Sonnensystem kaum verändert wurden und dadurch einen Einblick in Prozesse geben, die zur Bildung und Veränderung der ersten festen Materie führten. Solche Prozesse können anhand von Bruchstücken dieser Meteorite detailliert im Labor studiert werden, sodass Rückschlüsse auf die Entwicklung unseres Sonnensystems im frühen Stadium getroffen werden können. Ca-, Al-reiche Einschlüsse (CAIs) aus chondritischen Meteoriten sind die ersten Festkörper des Sonnensystems und enthalten viele refraktäre Metallnuggets (RMNs), welche hauptsächlich aus den Elementen Os, Ir, Ru, Mo und Pt bestehen. Nach weit verbreiteter Ansicht sind diese Nuggets wahrscheinlich im Gleichgewicht mit dem solaren Nebel kondensiert, bereits früher oder gleichzeitig mit Oxiden und Silikaten. Die exakten Mechanismen, die zu ihren heute beobachteten Eigenschaften führten, sind allerdings unklar. Um frühere Arbeiten fortzuführen, wurde eine hohe Anzahl RMNs in vier unterschiedlichen Typen von Meteoriten detailliert studiert, darunter solche aus dem nahezu unveränderten Acfer 094, Allende (CV3ox), Leoville (CV3red) und Murchison (CM2). Die RMNs wurden in-situ, assoziiert mit ihren Wirtsmineralen und auch in Säurerückständen gefunden, deren Präparationsprozedur in dieser Arbeit speziell für RMNs durch eine zusätzliche Dichtetrennung verbessert wurde.rnDie Ergebnisse decken eine Reihe von Ungereimtheiten zwischen den beobachteten RMN-Eigenschaften und einer Kondensationsherkunft auf, sowohl für Kondensation in solarer Umgebung, als auch für Kondensation aus Material von Supernovae oder roten Riesen, für die die Kondensationssequenzen refraktärer Metalle speziell für diesen Vergleich berechnet wurden. Stattdessen wurden in dieser Arbeit neue Einblicke in die RMN-Entstehung und die Entwicklung der ersten Festkörper (CAIs) durch eine Kombination aus experimentellen, isotopischen, strukturellen und petrologischen Studien an RMNs gewonnen. Viele der beobachteten Eigenschaften sind mit Ausfällung der RMN aus einer CAI-Schmelze vereinbar. Ein solches Szenario wird durch entsprechende Untersuchungen an synthetisch hergestellten, mit refraktären Metallen im Gleichgewicht stehenden CAI-Schmelzen bestätigt. Es folgt aus den Ergebnissen, dass die Mehrzahl der RMNs isotopisch solar ist und alle untersuchten RMNs innerhalb von CAIs bei rascher Abkühlung (um bis zu 1000 °C/40 sek.) einer CAI-Schmelze gebildet wurden. rn
Resumo:
The very young Wabar craters formed by impact of an iron meteorite and are known to the scientific community since 1933. We describe field observations made during a visit to the Wabar impact site, provide analytical data on the material collected, and combine these data with poorly known information discovered during the recovery of the largest meteorites. During our visit in March 2008, only two craters (Philby-B and 11 m) were visible; Philby-A was completely covered by sand. Mapping of the ejecta field showed that the outcrops are strongly changing over time. Combining information from different visitors with our own and satellite images, we estimate that the large seif dunes over the impact site migrate by approximately 1.0–2.0 m yr␣1 southward. Shock lithification took place even at the smallest, 11 m crater, but planar fractures (PFs) and undecorated planar deformation features (PDFs), as well as coesite and stishovite, have only been found in shock-lithified material from the two larger craters. Shock-lithified dune sand material shows perfectly preserved sedimentary structures including cross-bedding and animal burrows as well as postimpact structures such as open fractures perpendicular to the bedding, slickensides, and radiating striation resembling shatter cones. The composition of all impact melt glasses can be explained as mixtures of aeolian sand and iron meteorite. We observed a partial decoupling of Fe and Ni in the black impact glass, probably due to partitioning of Ni into unoxidized metal droplets. The absence of a Ca-enriched component demonstrates that the craters did not penetrate the bedrock below the sand sheet, which has an estimated thickness of 20–30 m.
Resumo:
Geochemical investigation of Martian meteorites (SNC meteorites) yields important constraints on the chemical and geodynamical evolution of Mars. These samples may not be representative of the whole of Mars; however, they provide constraints on the early differentiation processes on Mars. The bulk composition of Martian samples implies the presence of a metallic core that formed concurrently as the planet accreted. The strong depletion of highly siderophile elements in the Martian mantle is only possible if Mars had a large scale magma ocean early in its history allowing efficient separation of a metallic melt from molten silicate. The solidification of the magma ocean created chemical heterogeneities whose ancient origin is manifested in the heterogeneous 142Nd and 182W abundances observed in different meteorite groups derived from Mars. The isotope anomalies measured in SNC meteorites imply major chemical fractionation within the Martian mantle during the life time of the short-lived isotopes 146Sm and 182Hf. The Hf-W data are consistent with very rapid accretion of Mars within a few million years or, alternatively, a more protracted accretion history involving several large impacts and incomplete metal-silicate equilibration during core formation. In contrast to Earth early-formed chemical heterogeneities are still preserved on Mars, albeit slightly modified by mixing processes. The preservation of such ancient chemical differences is only possible if Mars did not undergo efficient whole mantle convection or vigorous plate tectonic style processes after the first few tens of millions of years of its history.
Resumo:
Asteroid 4Vesta seems to be a major intact protoplanet, with a surface composition similar to that of the HED (howardite-eucrite-diogenite) meteorites. The southern hemisphere is dominated by a giant impact scar, but previous impact models have failed to reproduce the observed topography. The recent discovery that Vesta's southern hemisphere is dominated by two overlapping basins provides an opportunity to model Vesta's topography more accurately. Here we report three-dimensional simulations of Vesta's global evolution under two overlapping planet-scale collisions. We closely reproduce its observed shape, and provide maps of impact excavation and ejecta deposition. Spiral patterns observed in the younger basin Rheasilvia, about one billion years old, are attributed to Coriolis forces during crater collapse. Surface materials exposed in the north come from a depth of about 20kilometres, according to our models, whereas materials exposed inside the southern double-excavation come from depths of about 60-100kilometres. If Vesta began as a layered, completely differentiated protoplanet, then our model predicts large areas of pure diogenites and olivine-rich rocks. These are not seen, possibly implying that the outer 100kilometres or so of Vesta is composed mainly of a basaltic crust (eucrites) with ultramafic intrusions (diogenites).
Resumo:
We measured the concentrations and isotopic compositions of He, Ne, and Ar in bulk samples and metal separates of 14 ordinary chondrite falls with long exposure ages and high metamorphic grades. In addition, we measured concentrations of the cosmogenic radionuclides 10Be, 26Al, and 36Cl in metal separates and in the nonmagnetic fractions of the selected meteorites. Using cosmogenic 36Cl and 36Ar measured in the metal separates, we determined 36Cl-36Ar cosmic-ray exposure (CRE) ages, which are shielding-independent and therefore particularly reliable. Using the cosmogenic noble gases and radionuclides, we are able to decipher the CRE history for the studied objects. Based on the correlation 3He/21Ne versus 22Ne/21Ne, we demonstrate that, among the meteorites studied, only one suffered significant diffusive losses (about 35%). The data confirm that the linear correlation 3He/21Ne versus 22Ne/21Ne breaks down at high shielding. Using 36Cl-36Ar exposure ages and measured noble gas concentrations, we determine 21Ne and 38Ar production rates as a function of 22Ne/21Ne. The new data agree with recent model calculations for the relationship between 21Ne and 38Ar production rates and the 22Ne/21Ne ratio, which does not always provide unique shielding information. Based on the model calculations, we determine a new correlation line for 21Ne and 38Ar production rates as a function of the shielding indicator 22Ne/21Ne for H, L, and LL chondrites with preatmospheric radii less than about 65 cm. We also calculated the 10Be/21Ne and 26Al/21Ne production rate ratios for the investigated samples, which show good agreement with recent model calculations.
Resumo:
In Sehoul, Morocco, the use of marginal land for agriculture became a necessity for the local population due to increased poverty and the occupation of the best land by new owners. Desertification poses an additional threat to agricultural production on marginal slopes, which are often stony and degraded. In a participatory process embedded in the EU DESIRE research project, potential sustainable land management measures were selected to address land degradation and desertification. Promising experiences with no-tillage practices elsewhere in Morocco had motivated the Moroccan government to promote conservation agriculture throughout the country. This combination of crop rotation, minimal soil disturbance and soil cover maintenance, however, had not yet been tested on sloping degraded land. Field trials of grazing enclosure combined with no or minimum tillage were conducted on the plots of two farmers, and trial results were analyzed based on stakeholders’ criteria. Results suggest that increased soil cover with barley residues improved rainwater use efficiency and yields only slightly, although soil water was generally enhanced. Soil moisture measurements revealed that no-tillage was favorable mainly at soil depths of 5 cm and in connection with low-rainfall events (<20 mm); under these circumstances, moisture content was generally higher under no-tillage than under conventional tillage. Moreover, stakeholder discussion confirmed that farmers in Sehoul remain primarily interested in animal husbandry and are reluctant to change the current grazing system. Implementation of conservation agriculture is thus challenged both by the degraded, sloping and stony nature of the land, and by the socio-economic circumstances in Sehoul.
Resumo:
he abundance and distribution of isotopes throughout the Solar System can be used to constrain the number and type of nucleosynthetic events that contributed material to the early nebula. Barium is particularly well suited to quantifying the degree of isotope heterogeneity in the Solar System because it comprises seven stable isotopes that were synthesized by three different nucleosynthetic processes (s-, r-, and p-processes), all of which contributed material to the Solar System. There is also potential contribution to 135Ba from short-lived radioisotope 135Cs, conclusive evidence for which is yet to be reported. Four Allende (CV3) Ca,Al-rich inclusions (CAI 1, CAI 2, CAI 4, CAI 5) and one Allende dark inclusion (DI) were analyzed for Ba isotope variability. Two CAIs (CAI 2 and CAI 5) display 135Ba excesses that are not accompanied by 137Ba anomalies. Calcium–aluminum-rich inclusion 1 displays a 135Ba excess that is possibly coupled with a 137Ba excess, and the remaining refractory inclusions (CAI 2 and DI) have terrestrial Ba isotope compositions. These Ba isotope data are presented in conjunction with published whole rock Ba isotope data from individual Allende CAIs. The enrichment in 135Ba and absence of coupled 137Ba excesses in CAI 2 and CAI 5 is interpreted to indicate that the anomalies are not purely nucleosynthetic in origin but also contain contributions (16–48 ppm) from the decay of short-lived 135Cs. The majority of Allende CAIs studied to date may also have similar contributions from 135Cs on the basis of higher than expected 135Ba excesses if the Ba isotope anomalies were purely nucleosynthetic in origin. The 135Ba anomalies appear not to be coupled with superchondritic Cs/Ba, which may imply that the contribution to 135Ba did not occur via in situ decay of live 135Cs. However, it is feasible that the CAIs had a superchondritic Cs/Ba during decay of 135Cs, but Cs was subsequently removed from the system during aqueous alteration on the parent body. An alternative scenario is the potential existence of a transient high-temperature reservoir having superchondritic Cs/Ba in the early Solar System while 135Cs was extant, which enabled a radiogenic 135Ba signature to develop in some early condensates. The nucleosynthetic source of 135Cs can be determined by reconciling the predicted astrophysical 135Cs abundance with its measured abundance in meteorites. Further, the currently accepted initial 135Cs/133Cs of the Solar System, [135Cs/133Cs]0, may be underestimated because the spread of Cs/Ba among samples is small and the range of excess 135Ba is limited thus leading to inaccuracies when estimating [135Cs/133Cs]0. If the initial meteoritic abundance of 135Cs was indeed higher than is currently thought, the most probable stellar source of short-lived radioisotopes was a nearby core-collapse supernova and/or the Wolf–Rayet wind driven by its progenitor.
Resumo:
In order to estimate the Mo isotope composition and Mo abundance in the Bulk Silicate Earth (BSE), a total of thirty komatiite samples from five localities on three continents were analyzed using an isotope dilution double spike technique. Calculated Mo concentrations of the emplaced komatiite lavas range from 25±325±3 to 66±22 ng/g66±22 ng/g, and the inferred Mo concentrations in the deep mantle sources of the komatiites range between 17±417±4 and 30±12 ng/g30±12 ng/g, with an average value of 23±7 ng/g23±7 ng/g (2SE). This average value represents our best estimate for the Mo concentration in the BSE; it is identical, within the uncertainty, to published previous estimates of 39±16 ng/g39±16 ng/g, but is at least a factor of 2 more precise. The Mo isotope compositions of the komatiite mantle sources overlap within uncertainty and range from View the MathML sourceδMo98=−0.04±0.28 to 0.11±0.10‰0.11±0.10‰, with an average of 0.04±0.06‰0.04±0.06‰ (2SE). This value is analytically indistinguishable from published Mo isotope compositions of ordinary and enstatite chondrites and represents the best estimate for the Mo isotope composition of the BSE. The inferred δ98Mo for the BSE is therefore lighter than the suggested average of the upper continental crust (0.3 to 0.4‰). Thus, from the mass balance standpoint, a reservoir with lighter Mo isotope composition should exist in the Earth's mantle; this reservoir can potentially be found in subducted oceanic crust. The similarity of δ98Mo between chondritic meteorites and estimates for the BSE from this study indicates that during the last major equilibration between Earth's core and mantle, i.e., the one that occurred during the giant impact that produced the Moon, chemical and isotopic equilibrium of Mo between Fe metal of the core and the silicate mantle was largely achieved.
Resumo:
Lithium abundances and isotope compositions are reported for a suite of martian meteorites that span the range of petrological and geochemical types recognized to date for Mars. Samples include twenty-one bulk-rock enriched, intermediate and depleted shergottites, six nakhlites, two chassignites, the orthopyroxenite Allan Hills (ALH) 84001 and the polymict breccia Northwest Africa (NWA) 7034. Shergottites unaffected by terrestrial weathering exhibit a range in δ7Li from 2.1 to 6.2‰, similar to that reported for pristine terrestrial peridotites and unaltered mid-ocean ridge and ocean island basalts. Two chassignites have δ7Li values (4.0‰) intermediate to the shergottite range, and combined, these meteorites provide the most robust current constraints on δ7Li of the martian mantle. The polymict breccia NWA 7034 has the lowest δ7Li (−0.2‰) of all terrestrially unaltered martian meteorites measured to date and may represent an isotopically light surface end-member. The new data for NWA 7034 imply that martian crustal surface materials had both a lighter Li isotope composition and elevated Li abundance compared with their associated mantle. These findings are supported by Li data for olivine-phyric shergotitte NWA 1068, a black glass phase isolated from the Tissint meteorite fall, and some nakhlites, which all show evidence for assimilation of a low-δ7Li crustal component. The range in δ7Li for nakhlites (1.8 to 5.2‰), and co-variations with chlorine abundance, suggests crustal contamination by Cl-rich brines. The differences in Li isotope composition and abundance between the martian mantle and estimated crust are not as large as the fractionations observed for terrestrial continental crust and mantle, suggesting a difference in the styles of alteration and weathering between water-dominated processes on Earth versus possibly Cl–S-rich brines on Mars. Using high-MgO shergottites (>15 wt.% MgO) it is possible to estimate the δ7Li of Bulk Silicate Mars (BSM) to be 4.2 ± 0.9‰ (2σ). This value is at the higher end of estimates for the Bulk Silicate Earth (BSE; 3.5 ± 1.0‰, 2σ), but overlaps within uncertainty.