765 resultados para stoichiometry


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Gibbs' energy change for the reaction, 3CoO (r.s.)+1/2O2(g)→Co3O4(sp), has been measured between 730 and 1250 K using a solid state galvanic cell: Pt, CuO+Cu2O|(CaO)ZrO2|CoO+Co3O4,Pt. The emf of this cell varies nonlinearly with temperature between 1075 and 1150 K, indicating a second or higher order phase transition in Co3O4around 1120 (±20) K, associated with an entropy change of ∼43 Jmol-1K-1. The phase transition is accompanied by an anomalous increase in lattice parameter and electrical conductivity. The cubic spinel structure is retained during the transition, which is caused by the change in CO+3 ions from low spin to high spin state. The octahedral site preference energy of CO+3 ion in the high spin state has been evaluated as -24.8 kJ mol-1. This is more positive than the value for CO+2 ion (-32.9 kJ mol-1). The cation distribution therefore changes from normal to inverse side during the phase transition. The transformation is unique, coupling spin unpairing in CO+3 ion with cation rearrangement on the spinel lattice, DTA in pure oxygen revealed a small peak corresponding to the transition, which could be differentiated from the large peak due to decomposition. TGA showed that the stoichiometry of oxide is not significantly altered during the transition. The Gibbs' energy of formation of Co3O4 from CoO and O2 below and above phase transition can be represented by the equations:ΔG0=-205,685+170.79T(±200) J mol-1(730-1080 K) and ΔG0=-157,235+127.53T(±200) J mol-1(1150-1250 K).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several amphipathic and cationic substances are known to bind lipid A, the toxic component of bacterial lipopolysaccharides. In this report, we have characterized, by fluorescence methods, the interaction of melittin, an amphipathic and basic 26-residue polypeptide isolated from bee venom, with lipid A. The stoichiometry of the complex appears to be two molecules of melittin to one of lipid A with a dissociation constant of 2.5 × 10 −6 M. The binding of melittin not only modifies the endotoxic properties of lipid A in a number of biological assays, but also results in abrogation of the hemolytic activity of melittin. A model of the complex is proposed based on the known structures of lipid A and melittin, and the observed stoichiometry of binding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The binding of 1-anilino-8-naphthalene-sulfonic acid to globular proteins at acidic pH has been investigated by electrospray ionization mass spectrometry (ESIMS). Mass spectra of apomyoglobin recorded in the pH range 2−7 establish that maximal ANS binding is observed at pH 4.0. As many as seven distinct species may be observed in the gas phase which correspond to protein molecules containing one to six molecules of bound ANS. At neutral pH only a single molecule of ANS is bound. In the case of cytochrome c, maximal binding is observed at pH 4.0, with five molecules being bound. Binding is suppressed at neutral pH. In both cases ESIMS demonstrates maximal ANS binding at pH values where the proteins have been reported to exist in molten globule states. ANS binding is not observed for lysozyme, which has a tightly folded structure over the entire pH range. Reduction of disulfide bonds in lysozyme leads to the detection of ANS-bound species at neutral pH. Binding is suppressed at low pH due to complete unfolding of the reduced protein. The results suggest that ESIMS may provide a convenient method of probing the stoichiometry and distribution of dye complexes with molten protein globules

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The formation and decomposition of quasicrystalline and crystalline phases in as-rapidly solidified and annealed commercial AISI 2024 aluminum alloy containing 2 wt% Li have been investigated by detailed transmission electron microscopy, including a combination of bright field and dark field imaging, selected area diffraction pattern analysis and energy dispersive X-ray microanalysis. The microstructure of as-melt spun 2024-2Li consists of alpha-Al cells, containing small coherent delta' precipitates, and particles or a continuous network of the icosahedral phase at the cell boundaries. After annealing at 300-degrees-C, the intercellular particles of the icosahedral phase coarsen progressively and assume a more faceted shape; after annealing at 400-degrees-C, particles of the decagonal and crystalline O phases precipitate heterogeneously on preexisting particles of the icosahedral phase; and after annealling at 500-degrees-C, the icosahedral and decagonal phases dissolve completely, and small particles of the crystalline O phase remain together with newly precipitated plates of the T1 phase. The icosahedral phase in melt spun and melt spun/annealed 2024-2Li belongs to the Al6CuLi3 class of icosahedral phases, with a quasilattice constant of 0.51 nm, a stoichiometry of (Al, Si)6(Cu, Mn, Fe) (Li, Mg)3 and an average composition of Al-24.1 at.% Cu-6.4 at.% Mg-1.7 at.% Si-0.3 at.% Mn-0.5 at.% Fe as-melt spun and Al-21.9 at.% Cu-6.3 at.% Mg-1.0 at.% Si-0.5 at.% Fe as-heat-treated. The decagonal phase in melt spun/annealed 2024-2Li belongs to the Al4Mn class of decagonal phases, with a periodicity of 1.23 nm along the 10-fold symmetry axis, a stoichiometry of Al3(Cu, Mn, Fe) and an average composition of Al-10.3 at.% Cu-13.8 at.% Mn-2.3 at.% Fe. The crystalline O phase in melt spun/annealed 2024-2Li has an orthorhombic structure with lattice parameters of a = 2.24 nm, b = 2.35 nm and c = 1.23 nm, a stoichiometry of Al3(Cu, Mn, Fe) and an average composition of Al-11.0 at.% Cu-14.8 at.% Mn-3.9 at.% Fe. Detailed analysis of selected area diffraction patterns shows a close similarity between the icosahedral, decagonal and crystalline O phases in melt spun and melt spun/annealed 2024-2Li. In particular, the decagonal phase and crystalline O phases have a similar composition, and exhibit an orientation relationship which can be expressed as: [GRAPHICS] suggesting that the orthorhombic O phase is an approximant structure for the decagonal phase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The high-temperature superconductors are complex oxides, generally containing two-dimensional CuO2 sheets. Various families of the cuprate superconductors are described, paying special attention to aspects related to oxygen stoichiometry, phase stability, synthesis and chemical manipulation of charge carriers. Other aspects discussed are chemical applications of cuprates, possibly as gas sensors and copper-free oxide superconductors. All but the substituted Nd and Pr cuprates are hole-superconductors. Several families of cuprates show a nearly constant n(h) at maximum T(c). Besides this universality, the cuprates exhibit a number of striking common features. Based on Cu(2p) photoemission studies, it is found that the Cu-O charge-transfer energy, DELTA, and the Cu(3d)-O(2p) hybridization strength, t(pd), are key factors in the superconductivity of cuprates. The relative intensity of the satellite in the Cu(2p) core-level spectra, the polarizability of the CuO2 sheets as well as the hole concentration are related to DELTA/t(pd). These chemical bonding factors have to be explicitly taken into account in any model for superconductivity of the cuprates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tin sulfide (SnS) nanostructures have been synthesized using a simple and low temperature chemical solution method on seeded substrates, and their structural and optical properties have been investigated. The as-grown SnS nanostructures with well-defined facets exhibited good stoichiometry between constituent elements. These nanobox structures are preferentially oriented along the 010] direction by having 100] and 001] orientations as surrounding facets and exhibited Two distinguishable optical band gaps of 1.36 and 1.9 eV. The effect of solution concentration as well as seed layer on the morphology or SnS structures has also been studied, and finally, the growth mechanism of the regular SnS nanobox structures is proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kinetics of the interaction of Au(III) with native calf thymus DNA has been studied spectrophotometrically to determine the kinetic parameters and to examine their dependency on the concentrations of DNA and Au(III), temperature, ionic strength and pH. The reaction is of the first order with respect to both the nucleotide unit of DNA and Au(III) in the stoichiometry of 2∶1 respectively. The rate constants vary with the initial ratio of DNA to Au(III) and is attributed to the effect of free chloride ions and the existence of a number of reaction sites with slight difference in the rate constants. The activation energies of this interaction have been found to be 14–16 kcal/mol. From the effect of ionic strength the reaction is found to occur between a positive and a negative ion in the rate-limiting step. The logarithm of rate constants are the linear function of pH and the slopes are dependent on ther-values. A plausible mechanism has been proposed which involves a primary dissociation of the major existing species (AuCl2(OH)2)−, to give (AuCl2)+ which then reacts with a site in the nucleotide unit of DNA in the rate-liminting step followed by a rapid binding to another site on the complementary strand of the DNA double helix. There exist a number of binding sites with slight difference in reactivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Crystals of dl-arginine hemisuccinate dihydrate (I)(monoclinic; P21/c; a = 5.292, b = 16.296, c = 15.203 Å; α= 92.89°; Z = 4) and l-arginine hemisuccinate hemisuccinic acid monohydrate (II) (triclinic; P1; a = 5.099; b = 10.222, c = 14.626 Å; α= 77.31, β= 89.46, γ= 78.42°; Z = 2) were grown under identical conditions from aqueous solutions of the components in molar proportions. The structures were solved by direct methods and refined to R = 0.068 for 2585 observed reflections in the case of (I) and R = 0.036 for 2154 observed reflections in the case of (11). Two of the three crystallographically independent arginine molecules in the complexes have conformations different from those observed so far in the crystal structures containing arginine. The succinic acid molecules and the succinate ions in the structures are centrosymmetric and planar. The crystal structure of (II) is highly pseudosymmetric. Arginine-succinate interactions in both the complexes involve specific guanidyl-carboxylate interactions. The basic elements of aggregation in both the structures are ribbons made up of alternating arginine dimers and succinate ions. However, the ribbons pack in different ways in the two structures. (II) presents an interesting case in which two ionisation states of the same molecule coexist in a crystal. The two complexes provide a good example of the effect of change in chirality on stoichiometry, conformation, aggregation, and ionisation state in the solid state.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DL-Proline hemisuccinic acid, C5H9NO2.1/2C4H6O4, M(r) = 174.2, P2(1/c) a = 5.254 (1), b = 17.480 (1), c = 10.230 (i) angstrom, beta = 119.60 (6)-degrees Z = 4, D(m) = 1.41 (4), D(x) = 1.42 g cm-3, R = 0.045 for 973 observed reflections. Glycyl-L-histidinium semisuccinate monohydrate, C8H13N4O3+.C4H5O4-.H2O, M(r) = 348.4, P2(1), a = 4.864 (1), b = 17.071 (2), c = 9.397 (1) angstrom, beta = 90.58-degrees, Z = 2, D(m) = 1.45 (1), D(x) = 1.48 g cm-3, R = 0.027 for 1610 observed reflections. Normal amino-acid and dipeptide aggregation patterns are preserved in the structures in spite of the presence of succinic acid/semisuccinate ions. In both the structures, the amino-acid/dipeptide layers stack in such a way that the succinic acid molecules/semisuccinate ions are enclosed in voids created during stacking. Substantial variability in the ionization state and the stoichiometry is observed in amino-acid and peptide complexes of succinic acid. Succinic acid molecules and succinate ions appear to prefer a planar centro-symmetric conformation with the two carboxyl (carboxylate) groups trans with respect to the central C=C bond. Considerable variation is seen in the departure from and modification of normal amino-acid aggregation patterns produced by the presence of succinic acid. Some of the complexes can be described as inclusion compounds with the amino acid/dipeptide as the 'host' and succinic acid/semisuccinate/succinate as the 'guest'. The effects of change in chirality, though very substantial, are not the same in different pairs of complexes involving DL and L isomers of the same amino acid.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermal decomposition of ethylene diamine diperchlorate (EDDP) has been studied by differential-thermal analysis (DTA), thermogravimetric analysis (TGA), isothermal weight-loss measurements and mass-spectrometric analysis of the decomposition products. It has been observed that EDDP decomposes in two temperature regions. The low-temperature decomposition stops at about 35 to 40 percent weight loss below 250°C. The reason for the low-temperature cessation may be the adsorption of excess ethylene diamine on the crystal surface of EDDP. An overall activation energy of 54 kcal per mole has been calculated for the thermal decomposition of EDDP. Mass-spectrometric analysis shows that the decomposition products are mainly CO2, H2O, HCl and N2. The following stoichiometry has been proposed for the thermal decomposition of EDDP: (−CH2NH3CIO4)2→2CO2O+2HCl+N2

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxidation of NADH by decavanadate, a polymeric form vanadate with a cage-like structure, in presence of rat liver microsomes followed a biphasic pattern. An initial slow phase involved a small rate of oxygen uptake and reduction of 3 of the 10 vanadium atoms. This was followed by a second rapid phase in which the rates of NADH oxidation and oxygen uptake increased several-fold with a stoichiometry of NADH: O2 of 1ratio1. The burst of NADH oxidation and oxygen uptake which occurs in phosphate, but not in Tris buffer, was prevented by SOD, catalase, histidine, EDTA, MnCl2 and CuSO4, but not by the hydroxyl radical quenchers, ethanol, methanol, formate and mannitol. The burst reaction is of a novel type that requires the polymeric structure of decavanadate for reduction of vanadium which, in presence of traces of H2O2, provides a reactive intermediate that promotes transfer of electrons from NADH to oxygen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Addition of NADH inhibited the peroxidative loss of scopoletin in presence of horseradish peroxidase and H2O2 and decreased the ratio of scopoletin (consumed):H2O2 (added). Concomitantly NADH was oxidized and oxygen was consumed with a stoichiometry of NADH: O-2 of 2:1. On step-wise addition of a small concentration of H2O2 a high rate of NADH oxidation was obtained for a progressively decreasing time period followed by termination of the reaction with NADH:H2O2 ratio decreasing from about 40 to 10. The rate of NADH oxidation increased linearly with increase in scopoletin concentration. Other phenolic compounds including p-coumarate also supported this reaction to a variable degree. A 418-nm absorbing compound;d accumulated during oxidation of NADH. The effectiveness of a small concentration of H2O2 in supporting NADH oxidation increased in presence of SOD and decreased in presence of cytochrome c, but the reaction terminated even in their presence. The results indicate that the peroxidase is not continuously generating H2O2 during scopolerin-mediated NADH oxidation and that both peroxidase and oxidase reactions occur simultaneously competing for an active form of the enzyme.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reaction between Fe foil and a disc of ilmenite solid solution (Co-0.48 Ni-0.52) TiO3 was studied at 1273 K. At the metal/oxide interface, the displacement reaction, Fe + (Co,Mg)TiO3 = Co + (Fe,Mg)TiO3 occurs, resulting in an ilmenite solid solution containing three divalent cations. Ferrous ions diffuse into the oxide solid solution and cause the precipitation of Co-Fe alloy as discrete particles inside the oxide matrix. The morphology of the product layer was characterized by SEM. Only two phases, alloy and ilmenite, were detected in the reaction zone. This suggests that the local flux condition imposed by ilmenite stoichiometry (Co + Fe + Mg):Ti = 1:1] was satisfied during the reactive diffusion: (J(Co) + J(Fe) + J(Mg)) = J(Ti). The composition of the alloy and the oxide was determined using EPMA as a function of distance in the direction of diffusion. Although Mg does not participate in the displacement reaction, its composition in the ilmenite phase was found to be position dependent inside the reaction zone. The up-hill diffusion of inert Mg is caused by the development of chemical potential gradients as a result of displacement reaction. The evolution of composition gradients inside the reaction zone and the diffusion path in a ternary composition diagram of the system CoTiO3-FeTiO3-MgTiO3 are discussed. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Titanium nitride films of a thickness of similar to 1.5 mu m were deposited on amorphous and crystalline substrates by DC reactive magnetron sputtering at ambient temperature with 100% nitrogen in the sputter gas. The growth of nanostructured, i.e. crystalline nano-grain sized, films at ambient temperature is demonstrated. The microstructure of the films grown on crystalline substrates reveals a larger grain size/crystallite size than that of the films deposited on amorphous substrates. Specular reflectance measurements on films deposited on different substrates indicate that the position of the Ti-N 2s band at 2.33 eV is substrate-dependent, indicating substrate-mediated stoichiometry. This clearly demonstrates that not only structure and microstructure, but also chemical composition of the films is substrate-influenced. The films deposited on amorphous substrates display lower hardness and modulus values than the films deposited on crystalline substrates, with the highest value of hardness being 19 GPa on a lanthanum aluminate substrate. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chemical modifications of structure, reactivity and catalytic properties of layered triple perovskite oxides, related to the YBa2Cu3O7-delta (123) system, have been briefly reviewed. These oxides form a versatile family of materials with wide-ranging chemical and physical properties. The multiple sites available for chemical doping, and the ability to reversibly intercalate oxygen at the defect sites have rendered these oxides important model systems in the area of oxide catalysis. An attempt has been made to comprehend the hitherto known catalytic reactions and correlate them to various factors like structure, oxygen diffusional limitations, different geometries adopted by various substituents, oxidative non-stoichiometry and activation energy for oxygen desorption. In particular, results on the enhanced catalytic activity of cobalt-substituted 123 oxide systems towards the selective catalytic oxidation of ammonia to nitric oxide and carbon monoxide to carbon dioxide are presented.