862 resultados para stochastic regression, consistency
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação.
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Informática
Resumo:
Dissertation presented to obtain the Ph.D degree in Chemistry.
Resumo:
INTRODUCTION: Malaria is a serious problem in the Brazilian Amazon region, and the detection of possible risk factors could be of great interest for public health authorities. The objective of this article was to investigate the association between environmental variables and the yearly registers of malaria in the Amazon region using Bayesian spatiotemporal methods. METHODS: We used Poisson spatiotemporal regression models to analyze the Brazilian Amazon forest malaria count for the period from 1999 to 2008. In this study, we included some covariates that could be important in the yearly prediction of malaria, such as deforestation rate. We obtained the inferences using a Bayesian approach and Markov Chain Monte Carlo (MCMC) methods to simulate samples for the joint posterior distribution of interest. The discrimination of different models was also discussed. RESULTS: The model proposed here suggests that deforestation rate, the number of inhabitants per km², and the human development index (HDI) are important in the prediction of malaria cases. CONCLUSIONS: It is possible to conclude that human development, population growth, deforestation, and their associated ecological alterations are conducive to increasing malaria risk. We conclude that the use of Poisson regression models that capture the spatial and temporal effects under the Bayesian paradigm is a good strategy for modeling malaria counts.
Resumo:
Abstract: INTRODUCTION: Geographic information systems (GIS) enable public health data to be analyzed in terms of geographical variability and the relationship between risk factors and diseases. This study discusses the application of the geographic weighted regression (GWR) model to health data to improve the understanding of spatially varying social and clinical factors that potentially impact leprosy prevalence. METHODS: This ecological study used data from leprosy case records from 1998-2006, aggregated by neighborhood in the Duque de Caxias municipality in the State of Rio de Janeiro, Brazil. In the GWR model, the associations between the log of the leprosy detection rate and social and clinical factors were analyzed. RESULTS: Maps of the estimated coefficients by neighborhood confirmed the heterogeneous spatial relationships between the leprosy detection rates and the predictors. The proportion of households with piped water was associated with higher detection rates, mainly in the northeast of the municipality. Indeterminate forms were strongly associated with higher detections rates in the south, where access to health services was more established. CONCLUSIONS: GWR proved a useful tool for epidemiological analysis of leprosy in a local area, such as Duque de Caxias. Epidemiological analysis using the maps of the GWR model offered the advantage of visualizing the problem in sub-regions and identifying any spatial dependence in the local study area.
Resumo:
This paper aims at developing a collision prediction model for three-leg junctions located in national roads (NR) in Northern Portugal. The focus is to identify factors that contribute for collision type crashes in those locations, mainly factors related to road geometric consistency, since literature is scarce on those, and to research the impact of three modeling methods: generalized estimating equations, random-effects negative binomial models and random-parameters negative binomial models, on the factors of those models. The database used included data published between 2008 and 2010 of 177 three-leg junctions. It was split in three groups of contributing factors which were tested sequentially for each of the adopted models: at first only traffic, then, traffic and the geometric characteristics of the junctions within their area of influence; and, lastly, factors which show the difference between the geometric characteristics of the segments boarding the junctionsâ area of influence and the segment included in that area were added. The choice of the best modeling technique was supported by the result of a cross validation made to ascertain the best model for the three sets of researched contributing factors. The models fitted with random-parameters negative binomial models had the best performance in the process. In the best models obtained for every modeling technique, the characteristics of the road environment, including proxy measures for the geometric consistency, along with traffic volume, contribute significantly to the number of collisions. Both the variables concerning junctions and the various national highway segments in their area of influence, as well as variations from those characteristics concerning roadway segments which border the already mentioned area of influence have proven their relevance and, therefore, there is a rightful need to incorporate the effect of geometric consistency in the three-leg junctions safety studies.
Resumo:
Extreme value models are widely used in different areas. The Birnbaum–Saunders distribution is receiving considerable attention due to its physical arguments and its good properties. We propose a methodology based on extreme value Birnbaum–Saunders regression models, which includes model formulation, estimation, inference and checking. We further conduct a simulation study for evaluating its performance. A statistical analysis with real-world extreme value environmental data using the methodology is provided as illustration.
Resumo:
The authors propose a mathematical model to minimize the project total cost where there are multiple resources constrained by maximum availability. They assume the resources as renewable and the activities can use any subset of resources requiring any quantity from a limited real interval. The stochastic nature is inferred by means of a stochastic work content defined per resource within an activity and following a known distribution and the total cost is the sum of the resource allocation cost with the tardiness cost or earliness bonus in case the project finishes after or before the due date, respectively. The model was computationally implemented relying upon an interchange of two global optimization metaheuristics – the electromagnetism-like mechanism and the evolutionary strategies. Two experiments were conducted testing the implementation to projects with single and multiple resources, and with or without maximum availability constraints. The set of collected results shows good behavior in general and provide a tool to further assist project manager decision making in the planning phase.
Resumo:
Optimization with stochastic algorithms has become a relevant research field. Due to its stochastic nature, its assessment is not straightforward and involves integrating accuracy and precision. Performance profiles for the mean do not show the trade-off between accuracy and precision, and parametric stochastic profiles require strong distributional assumptions and are limited to the mean performance for a large number of runs. In this work, bootstrap performance profiles are used to compare stochastic algorithms for different statistics. This technique allows the estimation of the sampling distribution of almost any statistic even with small samples. Multiple comparison profiles are presented for more than two algorithms. The advantages and drawbacks of each assessment methodology are discussed.
Resumo:
OBJECTIVE: Theoretical and empirical analysis of items and internal consistency of the Portuguese-language version of Social Phobia and Anxiety Inventory (SPAI-Portuguese). METHODS: Social phobia experts conducted a 45-item content analysis of the SPAI-Portuguese administered to a sample of 1,014 university students. Item discrimination was evaluated by Student's t test; interitem, mean and item-to-total correlations, by Pearson coefficient; reliability was estimated by Cronbach's alpha. RESULTS: There was 100% agreement among experts concerning the 45 items. On the SPAI-Portuguese 43 items were discriminative (p < 0.05). A few inter-item correlations between both subscales were below 0.2. The mean inter-item correlations were: 0.41 on social phobia subscale; 0.32 on agoraphobia subscale and 0.32 on the SPAI-Portuguese. Item-to-total correlations were all higher then 0.3 (p < 0.001). Cronbach's alphas were: 0.95 on the SPAI-Portuguese; 0.96 on social phobia subscale; 0.85 on agoraphobia subscale. CONCLUSION: The 45-item content analysis revealed appropriateness concerning the underlying construct of the SPAI-Portuguese (social phobia, agoraphobia) with good discriminative capacity on 43 items. The mean inter-item correlations and reliability coefficients demonstrated the SPAI-Portuguese and subscales internal consistency and multidimensionality. No item was suppressed in the SPAI-Portuguese but the authors suggest that a shortened SPAI, in its different versions, could be an even more useful tool for research settings in social phobia.
Resumo:
This paper discusses models, associations and causation in psychiatry. The different types of association (linear, positive, negative, exponential, partial, U shaped relationship, hidden and spurious) between variables involved in mental disorders are presented as well as the use of multiple regression analysis to disentangle interrelatedness amongst multiple variables. A useful model should have internal consistency, external validity and predictive power; be dynamic in order to accommodate new sound knowledge; and should fit facts rather than they other way around. It is argued that whilst models are theoretical constructs they also convey a style of reasoning and can change clinical practice. Cause and effect are complex phenomena in that the same cause can yield different effects. Conversely, the same effect can have a different range of causes. In mental disorders and human behaviour there is always a chain of events initiated by the indirect and remote cause; followed by intermediate causes; and finally the direct and more immediate cause. Causes of mental disorders are grouped as those: (i) which are necessary and sufficient; (ii) which are necessary but not sufficient; and (iii) which are neither necessary nor sufficient, but when present increase the risk for mental disorders.
Resumo:
Dissertação de mestrado integrado em Engenharia Civil