998 resultados para stochastic methods
Resumo:
Penguin colonies represent some of the most concentrated sources of ammonia emissions to the atmosphere in the world. The ammonia emitted into the atmosphere can have a large influence on the nitrogen cycling of ecosystems near the colonies. However, despite the ecological importance of the emissions, no measurements of ammonia emissions from penguin colonies have been made. The objective of this work was to determine the ammonia emission rate of a penguin colony using inverse-dispersion modelling and gradient methods. We measured meteorological variables and mean atmospheric concentrations of ammonia at seven locations near a colony of Adélie penguins in Antarctica to provide input data for inverse-dispersion modelling. Three different atmospheric dispersion models (ADMS, LADD and a Lagrangian stochastic model) were used to provide a robust emission estimate. The Lagrangian stochastic model was applied both in ‘forwards’ and ‘backwards’ mode to compare the difference between the two approaches. In addition, the aerodynamic gradient method was applied using vertical profiles of mean ammonia concentrations measured near the centre of the colony. The emission estimates derived from the simulations of the three dispersion models and the aerodynamic gradient method agreed quite well, giving a mean emission of 1.1 g ammonia per breeding pair per day (95% confidence interval: 0.4–2.5 g ammonia per breeding pair per day). This emission rate represents a volatilisation of 1.9% of the estimated nitrogen excretion of the penguins, which agrees well with that estimated from a temperature-dependent bioenergetics model. We found that, in this study, the Lagrangian stochastic model seemed to give more reliable emission estimates in ‘forwards’ mode than in ‘backwards’ mode due to the assumptions made.
Resumo:
En entornos hostiles tales como aquellas instalaciones científicas donde la radiación ionizante es el principal peligro, el hecho de reducir las intervenciones humanas mediante el incremento de las operaciones robotizadas está siendo cada vez más de especial interés. CERN, la Organización Europea para la Investigación Nuclear, tiene alrededor de unos 50 km de superficie subterránea donde robots móviles controlador de forma remota podrían ayudar en su funcionamiento, por ejemplo, a la hora de llevar a cabo inspecciones remotas sobre radiación en los diferentes áreas destinados al efecto. No solo es preciso considerar que los robots deben ser capaces de recorrer largas distancias y operar durante largos periodos de tiempo, sino que deben saber desenvolverse en los correspondientes túneles subterráneos, tener en cuenta la presencia de campos electromagnéticos, radiación ionizante, etc. y finalmente, el hecho de que los robots no deben interrumpir el funcionamiento de los aceleradores. El hecho de disponer de un sistema de comunicaciones inalámbrico fiable y robusto es esencial para la correcta ejecución de las misiones que los robots deben afrontar y por supuesto, para evitar tales situaciones en las que es necesario la recuperación manual de los robots al agotarse su energía o al perder el enlace de comunicaciones. El objetivo de esta Tesis es proveer de las directrices y los medios necesarios para reducir el riesgo de fallo en la misión y maximizar las capacidades de los robots móviles inalámbricos los cuales disponen de almacenamiento finito de energía al trabajar en entornos peligrosos donde no se dispone de línea de vista directa. Para ello se proponen y muestran diferentes estrategias y métodos de comunicación inalámbrica. Teniendo esto en cuenta, se presentan a continuación los objetivos de investigación a seguir a lo largo de la Tesis: predecir la cobertura de comunicaciones antes y durante las misiones robotizadas; optimizar la capacidad de red inalámbrica de los robots móviles con respecto a su posición; y mejorar el rango operacional de esta clase de robots. Por su parte, las contribuciones a la Tesis se citan más abajo. El primer conjunto de contribuciones son métodos novedosos para predecir el consumo de energía y la autonomía en la comunicación antes y después de disponer de los robots en el entorno seleccionado. Esto es importante para proporcionar conciencia de la situación del robot y evitar fallos en la misión. El consumo de energía se predice usando una estrategia propuesta la cual usa modelos de consumo provenientes de diferentes componentes en un robot. La predicción para la cobertura de comunicaciones se desarrolla usando un nuevo filtro de RSS (Radio Signal Strength) y técnicas de estimación con la ayuda de Filtros de Kalman. El segundo conjunto de contribuciones son métodos para optimizar el rango de comunicaciones usando novedosas técnicas basadas en muestreo espacial que son robustas frente a ruidos de campos de detección y radio y que proporcionan redundancia. Se emplean métodos de diferencia central finitos para determinar los gradientes 2D RSS y se usa la movilidad del robot para optimizar el rango de comunicaciones y la capacidad de red. Este método también se valida con un caso de estudio centrado en la teleoperación háptica de robots móviles inalámbricos. La tercera contribución es un algoritmo robusto y estocástico descentralizado para la optimización de la posición al considerar múltiples robots autónomos usados principalmente para extender el rango de comunicaciones desde la estación de control al robot que está desarrollando la tarea. Todos los métodos y algoritmos propuestos se verifican y validan usando simulaciones y experimentos de campo con variedad de robots móviles disponibles en CERN. En resumen, esta Tesis ofrece métodos novedosos y demuestra su uso para: predecir RSS; optimizar la posición del robot; extender el rango de las comunicaciones inalámbricas; y mejorar las capacidades de red de los robots móviles inalámbricos para su uso en aplicaciones dentro de entornos peligrosos, que como ya se mencionó anteriormente, se destacan las instalaciones científicas con emisión de radiación ionizante. En otros términos, se ha desarrollado un conjunto de herramientas para mejorar, facilitar y hacer más seguras las misiones de los robots en entornos hostiles. Esta Tesis demuestra tanto en teoría como en práctica que los robots móviles pueden mejorar la calidad de las comunicaciones inalámbricas mediante la profundización en el estudio de su movilidad para optimizar dinámicamente sus posiciones y mantener conectividad incluso cuando no existe línea de vista. Los métodos desarrollados en la Tesis son especialmente adecuados para su fácil integración en robots móviles y pueden ser aplicados directamente en la capa de aplicación de la red inalámbrica. ABSTRACT In hostile environments such as in scientific facilities where ionising radiation is a dominant hazard, reducing human interventions by increasing robotic operations are desirable. CERN, the European Organization for Nuclear Research, has around 50 km of underground scientific facilities, where wireless mobile robots could help in the operation of the accelerator complex, e.g. in conducting remote inspections and radiation surveys in different areas. The main challenges to be considered here are not only that the robots should be able to go over long distances and operate for relatively long periods, but also the underground tunnel environment, the possible presence of electromagnetic fields, radiation effects, and the fact that the robots shall in no way interrupt the operation of the accelerators. Having a reliable and robust wireless communication system is essential for successful execution of such robotic missions and to avoid situations of manual recovery of the robots in the event that the robot runs out of energy or when the robot loses its communication link. The goal of this thesis is to provide means to reduce risk of mission failure and maximise mission capabilities of wireless mobile robots with finite energy storage capacity working in a radiation environment with non-line-of-sight (NLOS) communications by employing enhanced wireless communication methods. Towards this goal, the following research objectives are addressed in this thesis: predict the communication range before and during robotic missions; optimise and enhance wireless communication qualities of mobile robots by using robot mobility and employing multi-robot network. This thesis provides introductory information on the infrastructures where mobile robots will need to operate, the tasks to be carried out by mobile robots and the problems encountered in these environments. The reporting of research work carried out to improve wireless communication comprises an introduction to the relevant radio signal propagation theory and technology followed by explanation of the research in the following stages: An analysis of the wireless communication requirements for mobile robot for different tasks in a selection of CERN facilities; predictions of energy and communication autonomies (in terms of distance and time) to reduce risk of energy and communication related failures during missions; autonomous navigation of a mobile robot to find zone(s) of maximum radio signal strength to improve communication coverage area; and autonomous navigation of one or more mobile robots acting as mobile wireless relay (repeater) points in order to provide a tethered wireless connection to a teleoperated mobile robot carrying out inspection or radiation monitoring activities in a challenging radio environment. The specific contributions of this thesis are outlined below. The first sets of contributions are novel methods for predicting the energy autonomy and communication range(s) before and after deployment of the mobile robots in the intended environments. This is important in order to provide situational awareness and avoid mission failures. The energy consumption is predicted by using power consumption models of different components in a mobile robot. This energy prediction model will pave the way for choosing energy-efficient wireless communication strategies. The communication range prediction is performed using radio signal propagation models and applies radio signal strength (RSS) filtering and estimation techniques with the help of Kalman filters and Gaussian process models. The second set of contributions are methods to optimise the wireless communication qualities by using novel spatial sampling based techniques that are robust to sensing and radio field noises and provide redundancy features. Central finite difference (CFD) methods are employed to determine the 2-D RSS gradients and use robot mobility to optimise the communication quality and the network throughput. This method is also validated with a case study application involving superior haptic teleoperation of wireless mobile robots where an operator from a remote location can smoothly navigate a mobile robot in an environment with low-wireless signals. The third contribution is a robust stochastic position optimisation algorithm for multiple autonomous relay robots which are used for wireless tethering of radio signals and thereby to enhance the wireless communication qualities. All the proposed methods and algorithms are verified and validated using simulations and field experiments with a variety of mobile robots available at CERN. In summary, this thesis offers novel methods and demonstrates their use to predict energy autonomy and wireless communication range, optimise robots position to improve communication quality and enhance communication range and wireless network qualities of mobile robots for use in applications in hostile environmental characteristics such as scientific facilities emitting ionising radiations. In simpler terms, a set of tools are developed in this thesis for improving, easing and making safer robotic missions in hostile environments. This thesis validates both in theory and experiments that mobile robots can improve wireless communication quality by exploiting robots mobility to dynamically optimise their positions and maintain connectivity even when the (radio signal) environment possess non-line-of-sight characteristics. The methods developed in this thesis are well-suited for easier integration in mobile robots and can be applied directly at the application layer of the wireless network. The results of the proposed methods have outperformed other comparable state-of-the-art methods.
Resumo:
In this paper, a computer-based tool is developed to analyze student performance along a given curriculum. The proposed software makes use of historical data to compute passing/failing probabilities and simulates future student academic performance based on stochastic programming methods (MonteCarlo) according to the specific university regulations. This allows to compute the academic performance rates for the specific subjects of the curriculum for each semester, as well as the overall rates (the set of subjects in the semester), which are the efficiency rate and the success rate. Additionally, we compute the rates for the Bachelors degree, which are the graduation rate measured as the percentage of students who finish as scheduled or taking an extra year and the efficiency rate (measured as the percentage of credits of the curriculum with respect to the credits really taken). In Spain, these metrics have been defined by the National Quality Evaluation and Accreditation Agency (ANECA). Moreover, the sensitivity of the performance metrics to some of the parameters of the simulator is analyzed using statistical tools (Design of Experiments). The simulator has been adapted to the curriculum characteristics of the Bachelor in Engineering Technologies at the Technical University of Madrid(UPM).
Resumo:
In maritime transportation, decisions are made in a dynamic setting where many aspects of the future are uncertain. However, most academic literature on maritime transportation considers static and deterministic routing and scheduling problems. This work addresses a gap in the literature on dynamic and stochastic maritime routing and scheduling problems, by focusing on the scheduling of departure times. Five simple strategies for setting departure times are considered, as well as a more advanced strategy which involves solving a mixed integer mathematical programming problem. The latter strategy is significantly better than the other methods, while adding only a small computational effort.
Resumo:
Heuristics for stochastic and dynamic vehicle routing problems are often kept relatively simple, in part due to the high computational burden resulting from having to consider stochastic information in some form. In this work, three existing heuristics are extended by three different local search variations: a first improvement descent using stochastic information, a tabu search using stochastic information when updating the incumbent solution, and a tabu search using stochastic information when selecting moves based on a list of moves determined through a proxy evaluation. In particular, the three local search variations are designed to utilize stochastic information in the form of sampled scenarios. The results indicate that adding local search using stochastic information to the existing heuristics can further reduce operating costs for shipping companies by 0.5–2 %. While the existing heuristics could produce structurally different solutions even when using similar stochastic information in the search, the appended local search methods seem able to make the final solutions more similar in structure.
Resumo:
The numerical solution of stochastic differential equations (SDEs) has been focussed recently on the development of numerical methods with good stability and order properties. These numerical implementations have been made with fixed stepsize, but there are many situations when a fixed stepsize is not appropriate. In the numerical solution of ordinary differential equations, much work has been carried out on developing robust implementation techniques using variable stepsize. It has been necessary, in the deterministic case, to consider the best choice for an initial stepsize, as well as developing effective strategies for stepsize control-the same, of course, must be carried out in the stochastic case. In this paper, proportional integral (PI) control is applied to a variable stepsize implementation of an embedded pair of stochastic Runge-Kutta methods used to obtain numerical solutions of nonstiff SDEs. For stiff SDEs, the embedded pair of the balanced Milstein and balanced implicit method is implemented in variable stepsize mode using a predictive controller for the stepsize change. The extension of these stepsize controllers from a digital filter theory point of view via PI with derivative (PID) control will also be implemented. The implementations show the improvement in efficiency that can be attained when using these control theory approaches compared with the regular stepsize change strategy. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
In this work we discuss the effects of white and coloured noise perturbations on the parameters of a mathematical model of bacteriophage infection introduced by Beretta and Kuang in [Math. Biosc. 149 (1998) 57]. We numerically simulate the strong solutions of the resulting systems of stochastic ordinary differential equations (SDEs), with respect to the global error, by means of numerical methods of both Euler-Taylor expansion and stochastic Runge-Kutta type. (C) 2003 IMACS. Published by Elsevier B.V. All rights reserved.
Resumo:
Two stochastic production frontier models are formulated within the generalized production function framework popularized by Zellner and Revankar (Rev. Econ. Stud. 36 (1969) 241) and Zellner and Ryu (J. Appl. Econometrics 13 (1998) 101). This framework is convenient for parsimonious modeling of a production function with returns to scale specified as a function of output. Two alternatives for introducing the stochastic inefficiency term and the stochastic error are considered. In the first the errors are added to an equation of the form h(log y, theta) = log f (x, beta) where y denotes output, x is a vector of inputs and (theta, beta) are parameters. In the second the equation h(log y,theta) = log f(x, beta) is solved for log y to yield a solution of the form log y = g[theta, log f(x, beta)] and the errors are added to this equation. The latter alternative is novel, but it is needed to preserve the usual definition of firm efficiency. The two alternative stochastic assumptions are considered in conjunction with two returns to scale functions, making a total of four models that are considered. A Bayesian framework for estimating all four models is described. The techniques are applied to USDA state-level data on agricultural output and four inputs. Posterior distributions for all parameters, for firm efficiencies and for the efficiency rankings of firms are obtained. The sensitivity of the results to the returns to scale specification and to the stochastic specification is examined. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
First principles simulations of the quantum dynamics of interacting Bose gases using the stochastic gauge representation are analysed. In a companion paper, we showed how the positive-P representation can be applied to these problems using stochastic differential equations. That method, however, is limited by increased sampling error as time evolves. Here, we show how the sampling error can be greatly reduced and the simulation time significantly extended using stochastic gauges. In particular, local stochastic gauges (a subset) are investigated. Improvements are confirmed in numerical calculations of single-, double- and multi-mode systems in the weak-mode coupling regime. Convergence issues are investigated, including the recognition of two modes by which stochastic equations produced by phase-space methods in general can diverge: movable singularities and a noise-weight relationship. The example calculated here displays wave-like behaviour in spatial correlation functions propagating in a uniform 1D gas after a sudden change in the coupling constant. This could in principle be tested experimentally using Feshbach resonance methods.
Resumo:
Discrete stochastic simulations are a powerful tool for understanding the dynamics of chemical kinetics when there are small-to-moderate numbers of certain molecular species. In this paper we introduce delays into the stochastic simulation algorithm, thus mimicking delays associated with transcription and translation. We then show that this process may well explain more faithfully than continuous deterministic models the observed sustained oscillations in expression levels of hes1 mRNA and Hes1 protein.
Resumo:
We present in this paper ideas to tackle the problem of analysing and forecasting nonstationary time series within the financial domain. Accepting the stochastic nature of the underlying data generator we assume that the evolution of the generator's parameters is restricted on a deterministic manifold. Therefore we propose methods for determining the characteristics of the time-localised distribution. Starting with the assumption of a static normal distribution we refine this hypothesis according to the empirical results obtained with the methods anc conclude with the indication of a dynamic non-Gaussian behaviour with varying dependency for the time series under consideration.
Resumo:
This thesis is concerned with approximate inference in dynamical systems, from a variational Bayesian perspective. When modelling real world dynamical systems, stochastic differential equations appear as a natural choice, mainly because of their ability to model the noise of the system by adding a variant of some stochastic process to the deterministic dynamics. Hence, inference in such processes has drawn much attention. Here two new extended frameworks are derived and presented that are based on basis function expansions and local polynomial approximations of a recently proposed variational Bayesian algorithm. It is shown that the new extensions converge to the original variational algorithm and can be used for state estimation (smoothing). However, the main focus is on estimating the (hyper-) parameters of these systems (i.e. drift parameters and diffusion coefficients). The new methods are numerically validated on a range of different systems which vary in dimensionality and non-linearity. These are the Ornstein-Uhlenbeck process, for which the exact likelihood can be computed analytically, the univariate and highly non-linear, stochastic double well and the multivariate chaotic stochastic Lorenz '63 (3-dimensional model). The algorithms are also applied to the 40 dimensional stochastic Lorenz '96 system. In this investigation these new approaches are compared with a variety of other well known methods such as the ensemble Kalman filter / smoother, a hybrid Monte Carlo sampler, the dual unscented Kalman filter (for jointly estimating the systems states and model parameters) and full weak-constraint 4D-Var. Empirical analysis of their asymptotic behaviour as a function of observation density or length of time window increases is provided.