964 resultados para statistical framework


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, reconstruction of three-dimensional (3D) patient-specific models of a hip joint from two-dimensional (2D) calibrated X-ray images is addressed. Existing 2D-3D reconstruction techniques usually reconstruct a patient-specific model of a single anatomical structure without considering the relationship to its neighboring structures. Thus, when those techniques would be applied to reconstruction of patient-specific models of a hip joint, the reconstructed models may penetrate each other due to narrowness of the hip joint space and hence do not represent a true hip joint of the patient. To address this problem we propose a novel 2D-3D reconstruction framework using an articulated statistical shape model (aSSM). Different from previous work on constructing an aSSM, where the joint posture is modeled as articulation in a training set via statistical analysis, here it is modeled as a parametrized rotation of the femur around the joint center. The exact rotation of the hip joint as well as the patient-specific models of the joint structures, i.e., the proximal femur and the pelvis, are then estimated by optimally fitting the aSSM to a limited number of calibrated X-ray images. Taking models segmented from CT data as the ground truth, we conducted validation experiments on both plastic and cadaveric bones. Qualitatively, the experimental results demonstrated that the proposed 2D-3D reconstruction framework preserved the hip joint structure and no model penetration was found. Quantitatively, average reconstruction errors of 1.9 mm and 1.1 mm were found for the pelvis and the proximal femur, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Complete-pelvis segmentation in antero-posterior pelvic radiographs is required to create a patient-specific three-dimensional pelvis model for surgical planning and postoperative assessment in image-free navigation of total hip arthroplasty. Methods A fast and robust framework for accurately segmenting the complete pelvis is presented, consisting of two consecutive modules. In the first module, a three-stage method was developed to delineate the left hemipelvis based on statistical appearance and shape models. To handle complex pelvic structures, anatomy-specific information processing techniques were employed. As the input to the second module, the delineated left hemi-pelvis was then reflected about an estimated symmetry line of the radiograph to initialize the right hemi-pelvis segmentation. The right hemi-pelvis was segmented by the same three-stage method, Results Two experiments conducted on respectively 143 and 40 AP radiographs demonstrated a mean segmentation accuracy of 1.61±0.68 mm. A clinical study to investigate the postoperative assessment of acetabular cup orientations based on the proposed framework revealed an average accuracy of 1.2°±0.9° and 1.6°±1.4° for anteversion and inclination, respectively. Delineation of each radiograph costs less than one minute. Conclusions Despite further validation needed, the preliminary results implied the underlying clinical applicability of the proposed framework for image-free THA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Complex diseases such as cancer result from multiple genetic changes and environmental exposures. Due to the rapid development of genotyping and sequencing technologies, we are now able to more accurately assess causal effects of many genetic and environmental factors. Genome-wide association studies have been able to localize many causal genetic variants predisposing to certain diseases. However, these studies only explain a small portion of variations in the heritability of diseases. More advanced statistical models are urgently needed to identify and characterize some additional genetic and environmental factors and their interactions, which will enable us to better understand the causes of complex diseases. In the past decade, thanks to the increasing computational capabilities and novel statistical developments, Bayesian methods have been widely applied in the genetics/genomics researches and demonstrating superiority over some regular approaches in certain research areas. Gene-environment and gene-gene interaction studies are among the areas where Bayesian methods may fully exert its functionalities and advantages. This dissertation focuses on developing new Bayesian statistical methods for data analysis with complex gene-environment and gene-gene interactions, as well as extending some existing methods for gene-environment interactions to other related areas. It includes three sections: (1) Deriving the Bayesian variable selection framework for the hierarchical gene-environment and gene-gene interactions; (2) Developing the Bayesian Natural and Orthogonal Interaction (NOIA) models for gene-environment interactions; and (3) extending the applications of two Bayesian statistical methods which were developed for gene-environment interaction studies, to other related types of studies such as adaptive borrowing historical data. We propose a Bayesian hierarchical mixture model framework that allows us to investigate the genetic and environmental effects, gene by gene interactions (epistasis) and gene by environment interactions in the same model. It is well known that, in many practical situations, there exists a natural hierarchical structure between the main effects and interactions in the linear model. Here we propose a model that incorporates this hierarchical structure into the Bayesian mixture model, such that the irrelevant interaction effects can be removed more efficiently, resulting in more robust, parsimonious and powerful models. We evaluate both of the 'strong hierarchical' and 'weak hierarchical' models, which specify that both or one of the main effects between interacting factors must be present for the interactions to be included in the model. The extensive simulation results show that the proposed strong and weak hierarchical mixture models control the proportion of false positive discoveries and yield a powerful approach to identify the predisposing main effects and interactions in the studies with complex gene-environment and gene-gene interactions. We also compare these two models with the 'independent' model that does not impose this hierarchical constraint and observe their superior performances in most of the considered situations. The proposed models are implemented in the real data analysis of gene and environment interactions in the cases of lung cancer and cutaneous melanoma case-control studies. The Bayesian statistical models enjoy the properties of being allowed to incorporate useful prior information in the modeling process. Moreover, the Bayesian mixture model outperforms the multivariate logistic model in terms of the performances on the parameter estimation and variable selection in most cases. Our proposed models hold the hierarchical constraints, that further improve the Bayesian mixture model by reducing the proportion of false positive findings among the identified interactions and successfully identifying the reported associations. This is practically appealing for the study of investigating the causal factors from a moderate number of candidate genetic and environmental factors along with a relatively large number of interactions. The natural and orthogonal interaction (NOIA) models of genetic effects have previously been developed to provide an analysis framework, by which the estimates of effects for a quantitative trait are statistically orthogonal regardless of the existence of Hardy-Weinberg Equilibrium (HWE) within loci. Ma et al. (2012) recently developed a NOIA model for the gene-environment interaction studies and have shown the advantages of using the model for detecting the true main effects and interactions, compared with the usual functional model. In this project, we propose a novel Bayesian statistical model that combines the Bayesian hierarchical mixture model with the NOIA statistical model and the usual functional model. The proposed Bayesian NOIA model demonstrates more power at detecting the non-null effects with higher marginal posterior probabilities. Also, we review two Bayesian statistical models (Bayesian empirical shrinkage-type estimator and Bayesian model averaging), which were developed for the gene-environment interaction studies. Inspired by these Bayesian models, we develop two novel statistical methods that are able to handle the related problems such as borrowing data from historical studies. The proposed methods are analogous to the methods for the gene-environment interactions on behalf of the success on balancing the statistical efficiency and bias in a unified model. By extensive simulation studies, we compare the operating characteristics of the proposed models with the existing models including the hierarchical meta-analysis model. The results show that the proposed approaches adaptively borrow the historical data in a data-driven way. These novel models may have a broad range of statistical applications in both of genetic/genomic and clinical studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The gravity model, entropy model, potential type model and others like these have been adopted to formulate interregional trade coefficients under the framework of Multi-Regional I-O (MRIO) analysis. Since most of these models are based upon analogies in physics or on statistical principles, they do not provide a theoretical explanation from the view of a firm's or individual's rational and deterministic decision making. In this paper, according to the deterministic choice theory, not only is an alternative formulation of the trade coefficients presented, but also a discussion of an appropriate definition for purchasing prices indices. Since this formulation is consistent with the MRIO system, it can be employed as a useful model-building tool in multi-regional models such as the spatial CGE model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An image processing observational technique for the stereoscopic reconstruction of the wave form of oceanic sea states is developed. The technique incorporates the enforcement of any given statistical wave law modeling the quasi Gaussianity of oceanic waves observed in nature. The problem is posed in a variational optimization framework, where the desired wave form is obtained as the minimizer of a cost functional that combines image observations, smoothness priors and a weak statistical constraint. The minimizer is obtained combining gradient descent and multigrid methods on the necessary optimality equations of the cost functional. Robust photometric error criteria and a spatial intensity compensation model are also developed to improve the performance of the presented image matching strategy. The weak statistical constraint is thoroughly evaluated in combination with other elements presented to reconstruct and enforce constraints on experimental stereo data, demonstrating the improvement in the estimation of the observed ocean surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Las técnicas de cirugía de mínima invasión (CMI) se están consolidando hoy en día como alternativa a la cirugía tradicional, debido a sus numerosos beneficios para los pacientes. Este cambio de paradigma implica que los cirujanos deben aprender una serie de habilidades distintas de aquellas requeridas en cirugía abierta. El entrenamiento y evaluación de estas habilidades se ha convertido en una de las mayores preocupaciones en los programas de formación de cirujanos, debido en gran parte a la presión de una sociedad que exige cirujanos bien preparados y una reducción en el número de errores médicos. Por tanto, se está prestando especial atención a la definición de nuevos programas que permitan el entrenamiento y la evaluación de las habilidades psicomotoras en entornos seguros antes de que los nuevos cirujanos puedan operar sobre pacientes reales. Para tal fin, hospitales y centros de formación están gradualmente incorporando instalaciones de entrenamiento donde los residentes puedan practicar y aprender sin riesgos. Es cada vez más común que estos laboratorios dispongan de simuladores virtuales o simuladores físicos capaces de registrar los movimientos del instrumental de cada residente. Estos simuladores ofrecen una gran variedad de tareas de entrenamiento y evaluación, así como la posibilidad de obtener información objetiva de los ejercicios. Los diferentes estudios de validación llevados a cabo dan muestra de su utilidad; pese a todo, los niveles de evidencia presentados son en muchas ocasiones insuficientes. Lo que es más importante, no existe un consenso claro a la hora de definir qué métricas son más útiles para caracterizar la pericia quirúrgica. El objetivo de esta tesis doctoral es diseñar y validar un marco de trabajo conceptual para la definición y validación de entornos para la evaluación de habilidades en CMI, en base a un modelo en tres fases: pedagógica (tareas y métricas a emplear), tecnológica (tecnologías de adquisición de métricas) y analítica (interpretación de la competencia en base a las métricas). Para tal fin, se describe la implementación práctica de un entorno basado en (1) un sistema de seguimiento de instrumental fundamentado en el análisis del vídeo laparoscópico; y (2) la determinación de la pericia en base a métricas de movimiento del instrumental. Para la fase pedagógica se diseñó e implementó un conjunto de tareas para la evaluación de habilidades psicomotoras básicas, así como una serie de métricas de movimiento. La validación de construcción llevada a cabo sobre ellas mostró buenos resultados para tiempo, camino recorrido, profundidad, velocidad media, aceleración media, economía de área y economía de volumen. Adicionalmente, los resultados obtenidos en la validación de apariencia fueron en general positivos en todos los grupos considerados (noveles, residentes, expertos). Para la fase tecnológica, se introdujo el EVA Tracking System, una solución para el seguimiento del instrumental quirúrgico basado en el análisis del vídeo endoscópico. La precisión del sistema se evaluó a 16,33ppRMS para el seguimiento 2D de la herramienta en la imagen; y a 13mmRMS para el seguimiento espacial de la misma. La validación de construcción con una de las tareas de evaluación mostró buenos resultados para tiempo, camino recorrido, profundidad, velocidad media, aceleración media, economía de área y economía de volumen. La validación concurrente con el TrEndo® Tracking System por su parte presentó valores altos de correlación para 8 de las 9 métricas analizadas. Finalmente, para la fase analítica se comparó el comportamiento de tres clasificadores supervisados a la hora de determinar automáticamente la pericia quirúrgica en base a la información de movimiento del instrumental, basados en aproximaciones lineales (análisis lineal discriminante, LDA), no lineales (máquinas de soporte vectorial, SVM) y difusas (sistemas adaptativos de inferencia neurodifusa, ANFIS). Los resultados muestran que en media SVM presenta un comportamiento ligeramente superior: 78,2% frente a los 71% y 71,7% obtenidos por ANFIS y LDA respectivamente. Sin embargo las diferencias estadísticas medidas entre los tres no fueron demostradas significativas. En general, esta tesis doctoral corrobora las hipótesis de investigación postuladas relativas a la definición de sistemas de evaluación de habilidades para cirugía de mínima invasión, a la utilidad del análisis de vídeo como fuente de información y a la importancia de la información de movimiento de instrumental a la hora de caracterizar la pericia quirúrgica. Basándose en estos cimientos, se han de abrir nuevos campos de investigación que contribuyan a la definición de programas de formación estructurados y objetivos, que puedan garantizar la acreditación de cirujanos sobradamente preparados y promocionen la seguridad del paciente en el quirófano. Abstract Minimally invasive surgery (MIS) techniques have become a standard in many surgical sub-specialties, due to their many benefits for patients. However, this shift in paradigm implies that surgeons must acquire a complete different set of skills than those normally attributed to open surgery. Training and assessment of these skills has become a major concern in surgical learning programmes, especially considering the social demand for better-prepared professionals and for the decrease of medical errors. Therefore, much effort is being put in the definition of structured MIS learning programmes, where practice with real patients in the operating room (OR) can be delayed until the resident can attest for a minimum level of psychomotor competence. To this end, skills’ laboratory settings are being introduced in hospitals and training centres where residents may practice and be assessed on their psychomotor skills. Technological advances in the field of tracking technologies and virtual reality (VR) have enabled the creation of new learning systems such as VR simulators or enhanced box trainers. These systems offer a wide range of tasks, as well as the capability of registering objective data on the trainees’ performance. Validation studies give proof of their usefulness; however, levels of evidence reported are in many cases low. More importantly, there is still no clear consensus on topics such as the optimal metrics that must be used to assess competence, the validity of VR simulation, the portability of tracking technologies into real surgeries (for advanced assessment) or the degree to which the skills measured and obtained in laboratory environments transfer to the OR. The purpose of this PhD is to design and validate a conceptual framework for the definition and validation of MIS assessment environments based on a three-pillared model defining three main stages: pedagogical (tasks and metrics to employ), technological (metric acquisition technologies) and analytical (interpretation of competence based on metrics). To this end, a practical implementation of the framework is presented, focused on (1) a video-based tracking system and (2) the determination of surgical competence based on the laparoscopic instruments’ motionrelated data. The pedagogical stage’s results led to the design and implementation of a set of basic tasks for MIS psychomotor skills’ assessment, as well as the definition of motion analysis parameters (MAPs) to measure performance on said tasks. Validation yielded good construct results for parameters such as time, path length, depth, average speed, average acceleration, economy of area and economy of volume. Additionally, face validation results showed positive acceptance on behalf of the experts, residents and novices. For the technological stage the EVA Tracking System is introduced. EVA provides a solution for tracking laparoscopic instruments from the analysis of the monoscopic video image. Accuracy tests for the system are presented, which yielded an average RMSE of 16.33pp for 2D tracking of the instrument on the image and of 13mm for 3D spatial tracking. A validation experiment was conducted using one of the tasks and the most relevant MAPs. Construct validation showed significant differences for time, path length, depth, average speed, average acceleration, economy of area and economy of volume; especially between novices and residents/experts. More importantly, concurrent validation with the TrEndo® Tracking System presented high correlation values (>0.7) for 8 of the 9 MAPs proposed. Finally, the analytical stage allowed comparing the performance of three different supervised classification strategies in the determination of surgical competence based on motion-related information. The three classifiers were based on linear (linear discriminant analysis, LDA), non-linear (support vector machines, SVM) and fuzzy (adaptive neuro fuzzy inference systems, ANFIS) approaches. Results for SVM show slightly better performance than the other two classifiers: on average, accuracy for LDA, SVM and ANFIS was of 71.7%, 78.2% and 71% respectively. However, when confronted, no statistical significance was found between any of the three. Overall, this PhD corroborates the investigated research hypotheses regarding the definition of MIS assessment systems, the use of endoscopic video analysis as the main source of information and the relevance of motion analysis in the determination of surgical competence. New research fields in the training and assessment of MIS surgeons can be proposed based on these foundations, in order to contribute to the definition of structured and objective learning programmes that guarantee the accreditation of well-prepared professionals and the promotion of patient safety in the OR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

n this work, a mathematical unifying framework for designing new fault detection schemes in nonlinear stochastic continuous-time dynamical systems is developed. These schemes are based on a stochastic process, called the residual, which reflects the system behavior and whose changes are to be detected. A quickest detection scheme for the residual is proposed, which is based on the computed likelihood ratios for time-varying statistical changes in the Ornstein–Uhlenbeck process. Several expressions are provided, depending on a priori knowledge of the fault, which can be employed in a proposed CUSUM-type approximated scheme. This general setting gathers different existing fault detection schemes within a unifying framework, and allows for the definition of new ones. A comparative simulation example illustrates the behavior of the proposed schemes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La predicción de energía eólica ha desempeñado en la última década un papel fundamental en el aprovechamiento de este recurso renovable, ya que permite reducir el impacto que tiene la naturaleza fluctuante del viento en la actividad de diversos agentes implicados en su integración, tales como el operador del sistema o los agentes del mercado eléctrico. Los altos niveles de penetración eólica alcanzados recientemente por algunos países han puesto de manifiesto la necesidad de mejorar las predicciones durante eventos en los que se experimenta una variación importante de la potencia generada por un parque o un conjunto de ellos en un tiempo relativamente corto (del orden de unas pocas horas). Estos eventos, conocidos como rampas, no tienen una única causa, ya que pueden estar motivados por procesos meteorológicos que se dan en muy diferentes escalas espacio-temporales, desde el paso de grandes frentes en la macroescala a procesos convectivos locales como tormentas. Además, el propio proceso de conversión del viento en energía eléctrica juega un papel relevante en la ocurrencia de rampas debido, entre otros factores, a la relación no lineal que impone la curva de potencia del aerogenerador, la desalineación de la máquina con respecto al viento y la interacción aerodinámica entre aerogeneradores. En este trabajo se aborda la aplicación de modelos estadísticos a la predicción de rampas a muy corto plazo. Además, se investiga la relación de este tipo de eventos con procesos atmosféricos en la macroescala. Los modelos se emplean para generar predicciones de punto a partir del modelado estocástico de una serie temporal de potencia generada por un parque eólico. Los horizontes de predicción considerados van de una a seis horas. Como primer paso, se ha elaborado una metodología para caracterizar rampas en series temporales. La denominada función-rampa está basada en la transformada wavelet y proporciona un índice en cada paso temporal. Este índice caracteriza la intensidad de rampa en base a los gradientes de potencia experimentados en un rango determinado de escalas temporales. Se han implementado tres tipos de modelos predictivos de cara a evaluar el papel que juega la complejidad de un modelo en su desempeño: modelos lineales autorregresivos (AR), modelos de coeficientes variables (VCMs) y modelos basado en redes neuronales (ANNs). Los modelos se han entrenado en base a la minimización del error cuadrático medio y la configuración de cada uno de ellos se ha determinado mediante validación cruzada. De cara a analizar la contribución del estado macroescalar de la atmósfera en la predicción de rampas, se ha propuesto una metodología que permite extraer, a partir de las salidas de modelos meteorológicos, información relevante para explicar la ocurrencia de estos eventos. La metodología se basa en el análisis de componentes principales (PCA) para la síntesis de la datos de la atmósfera y en el uso de la información mutua (MI) para estimar la dependencia no lineal entre dos señales. Esta metodología se ha aplicado a datos de reanálisis generados con un modelo de circulación general (GCM) de cara a generar variables exógenas que posteriormente se han introducido en los modelos predictivos. Los casos de estudio considerados corresponden a dos parques eólicos ubicados en España. Los resultados muestran que el modelado de la serie de potencias permitió una mejora notable con respecto al modelo predictivo de referencia (la persistencia) y que al añadir información de la macroescala se obtuvieron mejoras adicionales del mismo orden. Estas mejoras resultaron mayores para el caso de rampas de bajada. Los resultados también indican distintos grados de conexión entre la macroescala y la ocurrencia de rampas en los dos parques considerados. Abstract One of the main drawbacks of wind energy is that it exhibits intermittent generation greatly depending on environmental conditions. Wind power forecasting has proven to be an effective tool for facilitating wind power integration from both the technical and the economical perspective. Indeed, system operators and energy traders benefit from the use of forecasting techniques, because the reduction of the inherent uncertainty of wind power allows them the adoption of optimal decisions. Wind power integration imposes new challenges as higher wind penetration levels are attained. Wind power ramp forecasting is an example of such a recent topic of interest. The term ramp makes reference to a large and rapid variation (1-4 hours) observed in the wind power output of a wind farm or portfolio. Ramp events can be motivated by a broad number of meteorological processes that occur at different time/spatial scales, from the passage of large-scale frontal systems to local processes such as thunderstorms and thermally-driven flows. Ramp events may also be conditioned by features related to the wind-to-power conversion process, such as yaw misalignment, the wind turbine shut-down and the aerodynamic interaction between wind turbines of a wind farm (wake effect). This work is devoted to wind power ramp forecasting, with special focus on the connection between the global scale and ramp events observed at the wind farm level. The framework of this study is the point-forecasting approach. Time series based models were implemented for very short-term prediction, this being characterised by prediction horizons up to six hours ahead. As a first step, a methodology to characterise ramps within a wind power time series was proposed. The so-called ramp function is based on the wavelet transform and it provides a continuous index related to the ramp intensity at each time step. The underlying idea is that ramps are characterised by high power output gradients evaluated under different time scales. A number of state-of-the-art time series based models were considered, namely linear autoregressive (AR) models, varying-coefficient models (VCMs) and artificial neural networks (ANNs). This allowed us to gain insights into how the complexity of the model contributes to the accuracy of the wind power time series modelling. The models were trained in base of a mean squared error criterion and the final set-up of each model was determined through cross-validation techniques. In order to investigate the contribution of the global scale into wind power ramp forecasting, a methodological proposal to identify features in atmospheric raw data that are relevant for explaining wind power ramp events was presented. The proposed methodology is based on two techniques: principal component analysis (PCA) for atmospheric data compression and mutual information (MI) for assessing non-linear dependence between variables. The methodology was applied to reanalysis data generated with a general circulation model (GCM). This allowed for the elaboration of explanatory variables meaningful for ramp forecasting that were utilized as exogenous variables by the forecasting models. The study covered two wind farms located in Spain. All the models outperformed the reference model (the persistence) during both ramp and non-ramp situations. Adding atmospheric information had a noticeable impact on the forecasting performance, specially during ramp-down events. Results also suggested different levels of connection between the ramp occurrence at the wind farm level and the global scale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cyclic compression of several granular systems has been simulated with a molecular dynamics code. All the samples consisted of bidimensional, soft, frictionless and equal-sized particles that were initially arranged according to a squared lattice and were compressed by randomly generated irregular walls. The compression protocols can be described by some control variables (volume or external force acting on the walls) and by some dimensionless factors, that relate stiffness, density, diameter, damping ratio and water surface tension to the external forces, displacements and periods. Each protocol, that is associated to a dynamic process, results in an arrangement with its own macroscopic features: volume (or packing ratio), coordination number, and stress; and the differences between packings can be highly significant. The statistical distribution of the force-moment state of the particles (i.e. the equivalent average stress multiplied by the volume) is analyzed. In spite of the lack of a theoretical framework based on statistical mechanics specific for these protocols, it is shown how the obtained distributions of mean and relative deviatoric force-moment are. Then it is discussed on the nature of these distributions and on their relation to specific protocols.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

En hidrodinámica, el fenómeno de Sloshing se puede definir como el movimiento de la superficie libre de un fluido dentro de un contenedor sometido a fuerzas y perturbaciones externas. El fluido en cuestión experimenta violentos movimientos con importantes deformaciones de su superficie libre. La dinámica del fluido puede llegar a generar cargas hidrodinámicas considerables las cuales pueden afectar la integridad estructural y/o comprometer la estabilidad del vehículo que transporta dicho contenedor. El fenómeno de Sloshing ha sido extensivamente investigado matemática, numérica y experimentalmente, siendo el enfoque experimental el más usado debido a la complejidad del problema, para el cual los modelos matemáticos y de simulación son aun incapaces de predecir con suficiente rapidez y precisión las cargas debidas a dicho fenómeno. El flujo generado por el Sloshing usualmente se caracteriza por la presencia de un fluido multifase (gas-liquido) y turbulencia. Reducir al máximo posible la complejidad del fenómeno de Sloshing sin perder la esencia del problema es el principal reto de esta tesis doctoral, donde un trabajo experimental enfocado en casos canónicos de Sloshing es presentado y documentado con el objetivo de aumentar la comprensión de dicho fenómeno y por tanto intentar proveer información valiosa para validaciones de códigos numéricos. El fenómeno de Sloshing juega un papel importante en la industria del transporte marítimo de gas licuado (LNG). El mercado de LNG en los últimos años ha reportado un crecimiento hasta tres veces mayor al de los mercados de petróleo y gas convencionales. Ingenieros en laboratorios de investigación e ingenieros adscritos a la industria del LNG trabajan continuamente buscando soluciones económicas y seguras para contener, transferir y transportar grandes volúmenes de LNG. Los buques transportadores de LNG (LNGC) han pasado de ser unos pocos buques con capacidad de 75000 m3 hace unos treinta años, a una amplia flota con una capacidad de 140000 m3 actualmente. En creciente número, hoy día se construyen buques con capacidades que oscilan entre 175000 m3 y 250000 m3. Recientemente un nuevo concepto de buque LNG ha salido al mercado y se le conoce como FLNG. Un FLNG es un buque de gran valor añadido que solventa los problemas de extracción, licuefacción y almacenamiento del LNG, ya que cuenta con equipos de extracción y licuefacción a bordo, eliminando por tanto las tareas de transvase de las estaciones de licuefacción en tierra hacia los buques LNGC. EL LNG por tanto puede ser transferido directamente desde el FLNG hacia los buques LNGC en mar abierto. Niveles de llenado intermedios en combinación con oleaje durante las operaciones de trasvase inducen movimientos en los buques que generan por tanto el fenómeno de Sloshing dentro de los tanques de los FLNG y los LNGC. El trabajo de esta tesis doctoral lidia con algunos de los problemas del Sloshing desde un punto de vista experimental y estadístico, para ello una serie de tareas, descritas a continuación, se han llevado a cabo : 1. Un dispositivo experimental de Sloshing ha sido configurado. Dicho dispositivo ha permitido ensayar secciones rectangulares de tanques LNGC a escala con movimientos angulares de un grado de libertad. El dispositivo experimental ha sido instrumentado para realizar mediciones de movimiento, presiones, vibraciones y temperatura, así como la grabación de imágenes y videos. 2. Los impactos de olas generadas dentro de una sección rectangular de un LNGC sujeto a movimientos regulares forzados han sido estudiados mediante la caracterización del fenómeno desde un punto de vista estadístico enfocado en la repetitividad y la ergodicidad del problema. 3. El estudio de los impactos provocados por movimientos regulares ha sido extendido a un escenario más realístico mediante el uso de movimientos irregulares forzados. 4. El acoplamiento del Sloshing generado por el fluido en movimiento dentro del tanque LNGC y la disipación de la energía mecánica de un sistema no forzado de un grado de libertad (movimiento angular) sujeto a una excitación externa ha sido investigado. 5. En la última sección de esta tesis doctoral, la interacción entre el Sloshing generado dentro en una sección rectangular de un tanque LNGC sujeto a una excitación regular y un cuerpo elástico solidario al tanque ha sido estudiado. Dicho estudio corresponde a un problema de interacción fluido-estructura. Abstract In hydrodynamics, we refer to sloshing as the motion of liquids in containers subjected to external forces with large free-surface deformations. The liquid motion dynamics can generate loads which may affect the structural integrity of the container and the stability of the vehicle that carries such container. The prediction of these dynamic loads is a major challenge for engineers around the world working on the design of both the container and the vehicle. The sloshing phenomenon has been extensively investigated mathematically, numerically and experimentally. The latter has been the most fruitful so far, due to the complexity of the problem, for which the numerical and mathematical models are still incapable of accurately predicting the sloshing loads. The sloshing flows are usually characterised by the presence of multiphase interaction and turbulence. Reducing as much as possible the complexity of the sloshing problem without losing its essence is the main challenge of this phd thesis, where experimental work on selected canonical cases are presented and documented in order to better understand the phenomenon and to serve, in some cases, as an useful information for numerical validations. Liquid sloshing plays a key roll in the liquified natural gas (LNG) maritime transportation. The LNG market growth is more than three times the rated growth of the oil and traditional gas markets. Engineers working in research laboratories and companies are continuously looking for efficient and safe ways for containing, transferring and transporting the liquified gas. LNG carrying vessels (LNGC) have evolved from a few 75000 m3 vessels thirty years ago to a huge fleet of ships with a capacity of 140000 m3 nowadays and increasing number of 175000 m3 and 250000 m3 units. The concept of FLNG (Floating Liquified Natural Gas) has appeared recently. A FLNG unit is a high value-added vessel which can solve the problems of production, treatment, liquefaction and storage of the LNG because the vessel is equipped with a extraction and liquefaction facility. The LNG is transferred from the FLNG to the LNGC in open sea. The combination of partial fillings and wave induced motions may generate sloshing flows inside both the LNGC and the FLNG tanks. This work has dealt with sloshing problems from a experimental and statistical point of view. A series of tasks have been carried out: 1. A sloshing rig has been set up. It allows for testing tanks with one degree of freedom angular motion. The rig has been instrumented to measure motions, pressure and conduct video and image recording. 2. Regular motion impacts inside a rectangular section LNGC tank model have been studied, with forced motion tests, in order to characterise the phenomenon from a statistical point of view by assessing the repeatability and practical ergodicity of the problem. 3. The regular motion analysis has been extended to an irregular motion framework in order to reproduce more realistic scenarios. 4. The coupled motion of a single degree of freedom angular motion system excited by an external moment and affected by the fluid moment and the mechanical energy dissipation induced by sloshing inside the tank has been investigated. 5. The last task of the thesis has been to conduct an experimental investigation focused on the strong interaction between a sloshing flow in a rectangular section of a LNGC tank subjected to regular excitation and an elastic body clamped to the tank. It is thus a fluid structure interaction problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single-stranded regions in RNA secondary structure are important for RNA–RNA and RNA–protein interactions. We present a probability profile approach for the prediction of these regions based on a statistical algorithm for sampling RNA secondary structures. For the prediction of phylogenetically-determined single-stranded regions in secondary structures of representative RNA sequences, the probability profile offers substantial improvement over the minimum free energy structure. In designing antisense oligonucleotides, a practical problem is how to select a secondary structure for the target mRNA from the optimal structure(s) and many suboptimal structures with similar free energies. By summarizing the information from a statistical sample of probable secondary structures in a single plot, the probability profile not only presents a solution to this dilemma, but also reveals ‘well-determined’ single-stranded regions through the assignment of probabilities as measures of confidence in predictions. In antisense application to the rabbit β-globin mRNA, a significant correlation between hybridization potential predicted by the probability profile and the degree of inhibition of in vitro translation suggests that the probability profile approach is valuable for the identification of effective antisense target sites. Coupling computational design with DNA–RNA array technique provides a rational, efficient framework for antisense oligonucleotide screening. This framework has the potential for high-throughput applications to functional genomics and drug target validation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the creation of 3D statistical shape models of the knee bones and their use to embed information into a segmentation system for MRIs of the knee. We propose utilising the strong spatial relationship between the cartilages and the bones in the knee by embedding this information into the created models. This information can then be used to automate the initialisation of segmentation algorithms for the cartilages. The approach used to automatically generate the 3D statistical shape models of the bones is based on the point distribution model optimisation framework of Davies. Our implementation of this scheme uses a parameterized surface extraction algorithm, which is used as the basis for the optimisation scheme that automatically creates the 3D statistical shape models. The current approach is illustrated by generating 3D statistical shape models of the patella, tibia and femoral bones from a segmented database of the knee. The use of these models to embed spatial relationship information to aid in the automation of segmentation algorithms for the cartilages is then illustrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we review recent theoretical approaches for analysing the dynamics of on-line learning in multilayer neural networks using methods adopted from statistical physics. The analysis is based on monitoring a set of macroscopic variables from which the generalisation error can be calculated. A closed set of dynamical equations for the macroscopic variables is derived analytically and solved numerically. The theoretical framework is then employed for defining optimal learning parameters and for analysing the incorporation of second order information into the learning process using natural gradient descent and matrix-momentum based methods. We will also briefly explain an extension of the original framework for analysing the case where training examples are sampled with repetition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The modem digital communication systems are made transmission reliable by employing error correction technique for the redundancies. Codes in the low-density parity-check work along the principles of Hamming code, and the parity-check matrix is very sparse, and multiple errors can be corrected. The sparseness of the matrix allows for the decoding process to be carried out by probability propagation methods similar to those employed in Turbo codes. The relation between spin systems in statistical physics and digital error correcting codes is based on the existence of a simple isomorphism between the additive Boolean group and the multiplicative binary group. Shannon proved general results on the natural limits of compression and error-correction by setting up the framework known as information theory. Error-correction codes are based on mapping the original space of words onto a higher dimensional space in such a way that the typical distance between encoded words increases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel approach, based on statistical mechanics, to analyze typical performance of optimum code-division multiple-access (CDMA) multiuser detectors is reviewed. A `black-box' view ot the basic CDMA channel is introduced, based on which the CDMA multiuser detection problem is regarded as a `learning-from-examples' problem of the `binary linear perceptron' in the neural network literature. Adopting Bayes framework, analysis of the performance of the optimum CDMA multiuser detectors is reduced to evaluation of the average of the cumulant generating function of a relevant posterior distribution. The evaluation of the average cumulant generating function is done, based on formal analogy with a similar calculation appearing in the spin glass theory in statistical mechanics, by making use of the replica method, a method developed in the spin glass theory.