906 resultados para state estimation
Resumo:
The performance of algorithms for fault location i n transmission lines is directly related to the accuracy of its input data. Thus, fa ctors such as errors in the line parameters, failures in synchronization of oscillographic recor ds and errors in measurements of voltage and current can significantly influence the accurac y of algorithms that use bad data to indicate the fault location. This work presents a new method ology for fault location in transmission lines based on the theory of state estimation in or der to determine the location of faults more accurately by considering realistic systematic erro rs that may be present in measurements of voltage and current. The methodology was implemente d in two stages: pre-fault and post- fault. In the first step, assuming non-synchronized data, the synchronization angle and positive sequence line parameters are estimated, an d in the second, the fault distance is estimated. Besides calculating the most likely faul t distance obtained from measurement errors, the variance associated with the distance f ound is also determined, using the errors theory. This is one of the main contributions of th is work, since, with the proposed algorithm, it is possible to determine a most likely zone of f ault incidence, with approximately 95,45% of confidence. Tests for evaluation and validation of the proposed algorithm were realized from actual records of faults and from simulations of fictitious transmission systems using ATP software. The obtained results are relevant to show that the proposed estimation approach works even adopting realistic variances, c ompatible with real equipments errors.
Resumo:
Particle filtering has proven to be an effective localization method for wheeled autonomous vehicles. For a given map, a sensor model, and observations, occasions arise where the vehicle could equally likely be in many locations of the map. Because particle filtering algorithms may generate low confidence pose estimates under these conditions, more robust localization strategies are required to produce reliable pose estimates. This becomes more critical if the state estimate is an integral part of system control. We investigate the use of particle filter estimation techniques on a hovercraft vehicle. The marginally stable dynamics of a hovercraft require reliable state estimates for proper stability and control. We use the Monte Carlo localization method, which implements a particle filter in a recursive state estimate algorithm. An H-infinity controller, designed to accommodate the latency inherent in our state estimation, provides stability and controllability to the hovercraft. In order to eliminate the low confidence estimates produced in certain environments, a multirobot system is designed to introduce mobile environment features. By tracking and controlling the secondary robot, we can position the mobile feature throughout the environment to ensure a high confidence estimate, thus maintaining stability in the system. A laser rangefinder is the sensor the hovercraft uses to track the secondary robot, observe the environment, and facilitate successful localization and stability in motion.
Resumo:
Power system engineers face a double challenge: to operate electric power systems within narrow stability and security margins, and to maintain high reliability. There is an acute need to better understand the dynamic nature of power systems in order to be prepared for critical situations as they arise. Innovative measurement tools, such as phasor measurement units, can capture not only the slow variation of the voltages and currents but also the underlying oscillations in a power system. Such dynamic data accessibility provides us a strong motivation and a useful tool to explore dynamic-data driven applications in power systems. To fulfill this goal, this dissertation focuses on the following three areas: Developing accurate dynamic load models and updating variable parameters based on the measurement data, applying advanced nonlinear filtering concepts and technologies to real-time identification of power system models, and addressing computational issues by implementing the balanced truncation method. By obtaining more realistic system models, together with timely updated parameters and stochastic influence consideration, we can have an accurate portrait of the ongoing phenomena in an electrical power system. Hence we can further improve state estimation, stability analysis and real-time operation.
Resumo:
This paper presents MOTION, a modular on-line model for urban traffic signal control. It consists of a network and a local level and builds on enhanced traffic state estimation. Special consideration is given to the prioritization of public transit. MOTION provides possibilities for the interaction with integrated urban management systems.
Resumo:
In this thesis, we propose several advances in the numerical and computational algorithms that are used to determine tomographic estimates of physical parameters in the solar corona. We focus on methods for both global dynamic estimation of the coronal electron density and estimation of local transient phenomena, such as coronal mass ejections, from empirical observations acquired by instruments onboard the STEREO spacecraft. We present a first look at tomographic reconstructions of the solar corona from multiple points-of-view, which motivates the developments in this thesis. In particular, we propose a method for linear equality constrained state estimation that leads toward more physical global dynamic solar tomography estimates. We also present a formulation of the local static estimation problem, i.e., the tomographic estimation of local events and structures like coronal mass ejections, that couples the tomographic imaging problem to a phase field based level set method. This formulation will render feasible the 3D tomography of coronal mass ejections from limited observations. Finally, we develop a scalable algorithm for ray tracing dense meshes, which allows efficient computation of many of the tomographic projection matrices needed for the applications in this thesis.
Resumo:
The ability to accurately predict the remaining useful life of machine components is critical for machine continuous operation and can also improve productivity and enhance system’s safety. In condition-based maintenance (CBM), maintenance is performed based on information collected through condition monitoring and assessment of the machine health. Effective diagnostics and prognostics are important aspects of CBM for maintenance engineers to schedule a repair and to acquire replacement components before the components actually fail. Although a variety of prognostic methodologies have been reported recently, their application in industry is still relatively new and mostly focused on the prediction of specific component degradations. Furthermore, they required significant and sufficient number of fault indicators to accurately prognose the component faults. Hence, sufficient usage of health indicators in prognostics for the effective interpretation of machine degradation process is still required. Major challenges for accurate longterm prediction of remaining useful life (RUL) still remain to be addressed. Therefore, continuous development and improvement of a machine health management system and accurate long-term prediction of machine remnant life is required in real industry application. This thesis presents an integrated diagnostics and prognostics framework based on health state probability estimation for accurate and long-term prediction of machine remnant life. In the proposed model, prior empirical (historical) knowledge is embedded in the integrated diagnostics and prognostics system for classification of impending faults in machine system and accurate probability estimation of discrete degradation stages (health states). The methodology assumes that machine degradation consists of a series of degraded states (health states) which effectively represent the dynamic and stochastic process of machine failure. The estimation of discrete health state probability for the prediction of machine remnant life is performed using the ability of classification algorithms. To employ the appropriate classifier for health state probability estimation in the proposed model, comparative intelligent diagnostic tests were conducted using five different classifiers applied to the progressive fault data of three different faults in a high pressure liquefied natural gas (HP-LNG) pump. As a result of this comparison study, SVMs were employed in heath state probability estimation for the prediction of machine failure in this research. The proposed prognostic methodology has been successfully tested and validated using a number of case studies from simulation tests to real industry applications. The results from two actual failure case studies using simulations and experiments indicate that accurate estimation of health states is achievable and the proposed method provides accurate long-term prediction of machine remnant life. In addition, the results of experimental tests show that the proposed model has the capability of providing early warning of abnormal machine operating conditions by identifying the transitional states of machine fault conditions. Finally, the proposed prognostic model is validated through two industrial case studies. The optimal number of health states which can minimise the model training error without significant decrease of prediction accuracy was also examined through several health states of bearing failure. The results were very encouraging and show that the proposed prognostic model based on health state probability estimation has the potential to be used as a generic and scalable asset health estimation tool in industrial machinery.
Resumo:
This paper presents an innovative prognostics model based on health state probability estimation embedded in the closed loop diagnostic and prognostic system. To employ an appropriate classifier for health state probability estimation in the proposed prognostic model, the comparative intelligent diagnostic tests were conducted using five different classifiers applied to the progressive fault levels of three faults in HP-LNG pump. Two sets of impeller-rubbing data were employed for the prediction of pump remnant life based on estimation of discrete health state probability using an outstanding capability of SVM and a feature selection technique. The results obtained were very encouraging and showed that the proposed prognosis system has the potential to be used as an estimation tool for machine remnant life prediction in real life industrial applications.
Resumo:
In recent years, some models have been proposed for the fault section estimation and state identification of unobserved protective relays (FSE-SIUPR) under the condition of incomplete state information of protective relays. In these models, the temporal alarm information from a faulted power system is not well explored although it is very helpful in compensating the incomplete state information of protective relays, quickly achieving definite fault diagnosis results and evaluating the operating status of protective relays and circuit breakers in complicated fault scenarios. In order to solve this problem, an integrated optimization mathematical model for the FSE-SIUPR, which takes full advantage of the temporal characteristics of alarm messages, is developed in the framework of the well-established temporal constraint network. With this model, the fault evolution procedure can be explained and some states of unobserved protective relays identified. The model is then solved by means of the Tabu search (TS) and finally verified by test results of fault scenarios in a practical power system.
Resumo:
In condition-based maintenance (CBM), effective diagnostic and prognostic tools are essential for maintenance engineers to identify imminent fault and predict the remaining useful life before the components finally fail. This enables remedial actions to be taken in advance and reschedule of production if necessary. All machine components are subjected to degradation processes in real environments and they have certain failure characteristics which can be related to the operating conditions. This paper describes a technique for accurate assessment of the remnant life of bearings based on health state probability estimation and historical knowledge embedded in the closed loop diagnostics and prognostics system. The technique uses the Support Vector Machine (SVM) classifier as a tool for estimating health state probability of machine degradation process to provide long term prediction. To validate the feasibility of the proposed model, real life fault historical data from bearings of High Pressure-Liquefied Natural Gas (HP-LNG) pumps were analysed and used to obtain the optimal prediction of remaining useful life (RUL). The results obtained were very encouraging and showed that the proposed prognosis system based on health state probability estimation has the potential to be used as an estimation tool for remnant life prediction in industrial machinery.
Resumo:
Effective machine fault prognostic technologies can lead to elimination of unscheduled downtime and increase machine useful life and consequently lead to reduction of maintenance costs as well as prevention of human casualties in real engineering asset management. This paper presents a technique for accurate assessment of the remnant life of machines based on health state probability estimation technique and historical failure knowledge embedded in the closed loop diagnostic and prognostic system. To estimate a discrete machine degradation state which can represent the complex nature of machine degradation effectively, the proposed prognostic model employed a classification algorithm which can use a number of damage sensitive features compared to conventional time series analysis techniques for accurate long-term prediction. To validate the feasibility of the proposed model, the five different level data of typical four faults from High Pressure Liquefied Natural Gas (HP-LNG) pumps were used for the comparison of intelligent diagnostic test using five different classification algorithms. In addition, two sets of impeller-rub data were analysed and employed to predict the remnant life of pump based on estimation of health state probability using the Support Vector Machine (SVM) classifier. The results obtained were very encouraging and showed that the proposed prognostics system has the potential to be used as an estimation tool for machine remnant life prediction in real life industrial applications.
Resumo:
The maintenance of chlorine residual is needed at all the points in the distribution system supplied with chlorine as a disinfectant. The propagation and level of chlorine in a distribution system is affected by both bulk and pipe wall reactions. It is well known that the field determination of wall reaction parameter is difficult. The source strength of chlorine to maintain a specified chlorine residual at a target node is also an important parameter. The inverse model presented in the paper determines these water quality parameters, which are associated with different reaction kinetics, either in single or in groups of pipes. The weighted-least-squares method based on the Gauss-Newton minimization technique is used for the estimation of these parameters. The validation and application of the inverse model is illustrated with an example pipe distribution system under steady state. A generalized procedure to handle noisy and bad (abnormal) data is suggested, which can be used to estimate these parameters more accurately. The developed inverse model is useful for water supply agencies to calibrate their water distribution system and to improve their operational strategies to maintain water quality.
Resumo:
Sequential Monte Carlo (SMC) methods are popular computational tools for Bayesian inference in non-linear non-Gaussian state-space models. For this class of models, we propose SMC algorithms to compute the score vector and observed information matrix recursively in time. We propose two different SMC implementations, one with computational complexity $\mathcal{O}(N)$ and the other with complexity $\mathcal{O}(N^{2})$ where $N$ is the number of importance sampling draws. Although cheaper, the performance of the $\mathcal{O}(N)$ method degrades quickly in time as it inherently relies on the SMC approximation of a sequence of probability distributions whose dimension is increasing linearly with time. In particular, even under strong \textit{mixing} assumptions, the variance of the estimates computed with the $\mathcal{O}(N)$ method increases at least quadratically in time. The $\mathcal{O}(N^{2})$ is a non-standard SMC implementation that does not suffer from this rapid degrade. We then show how both methods can be used to perform batch and recursive parameter estimation.