996 resultados para split-operator scheme


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A high resolution, second-order central difference method for incompressible flows is presented. The method is based on a recent second-order extension of the classic Lax–Friedrichs scheme introduced for hyperbolic conservation laws (Nessyahu H. & Tadmor E. (1990) J. Comp. Physics. 87, 408-463; Jiang G.-S. & Tadmor E. (1996) UCLA CAM Report 96-36, SIAM J. Sci. Comput., in press) and augmented by a new discrete Hodge projection. The projection is exact, yet the discrete Laplacian operator retains a compact stencil. The scheme is fast, easy to implement, and readily generalizable. Its performance was tested on the standard periodic double shear-layer problem; no spurious vorticity patterns appear when the flow is underresolved. A short discussion of numerical boundary conditions is also given, along with a numerical example.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is an expanded and more detailed version of the work [1] in which the Operator Quantum Error Correction formalism was introduced. This is a new scheme for the error correction of quantum operations that incorporates the known techniques - i.e. the standard error correction model, the method of decoherence-free subspaces, and the noiseless subsystem method - as special cases, and relies on a generalized mathematical framework for noiseless subsystems that applies to arbitrary quantum operations. We also discuss a number of examples and introduce the notion of unitarily noiseless subsystems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computer networks produce tremendous amounts of event-based data that can be collected and managed to support an increasing number of new classes of pervasive applications. Examples of such applications are network monitoring and crisis management. Although the problem of distributed event-based management has been addressed in the non-pervasive settings such as the Internet, the domain of pervasive networks has its own characteristics that make these results non-applicable. Many of these applications are based on time-series data that possess the form of time-ordered series of events. Such applications also embody the need to handle large volumes of unexpected events, often modified on-the-fly, containing conflicting information, and dealing with rapidly changing contexts while producing results with low-latency. Correlating events across contextual dimensions holds the key to expanding the capabilities and improving the performance of these applications. This dissertation addresses this critical challenge. It establishes an effective scheme for complex-event semantic correlation. The scheme examines epistemic uncertainty in computer networks by fusing event synchronization concepts with belief theory. Because of the distributed nature of the event detection, time-delays are considered. Events are no longer instantaneous, but duration is associated with them. Existing algorithms for synchronizing time are split into two classes, one of which is asserted to provide a faster means for converging time and hence better suited for pervasive network management. Besides the temporal dimension, the scheme considers imprecision and uncertainty when an event is detected. A belief value is therefore associated with the semantics and the detection of composite events. This belief value is generated by a consensus among participating entities in a computer network. The scheme taps into in-network processing capabilities of pervasive computer networks and can withstand missing or conflicting information gathered from multiple participating entities. Thus, this dissertation advances knowledge in the field of network management by facilitating the full utilization of characteristics offered by pervasive, distributed and wireless technologies in contemporary and future computer networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computer networks produce tremendous amounts of event-based data that can be collected and managed to support an increasing number of new classes of pervasive applications. Examples of such applications are network monitoring and crisis management. Although the problem of distributed event-based management has been addressed in the non-pervasive settings such as the Internet, the domain of pervasive networks has its own characteristics that make these results non-applicable. Many of these applications are based on time-series data that possess the form of time-ordered series of events. Such applications also embody the need to handle large volumes of unexpected events, often modified on-the-fly, containing conflicting information, and dealing with rapidly changing contexts while producing results with low-latency. Correlating events across contextual dimensions holds the key to expanding the capabilities and improving the performance of these applications. This dissertation addresses this critical challenge. It establishes an effective scheme for complex-event semantic correlation. The scheme examines epistemic uncertainty in computer networks by fusing event synchronization concepts with belief theory. Because of the distributed nature of the event detection, time-delays are considered. Events are no longer instantaneous, but duration is associated with them. Existing algorithms for synchronizing time are split into two classes, one of which is asserted to provide a faster means for converging time and hence better suited for pervasive network management. Besides the temporal dimension, the scheme considers imprecision and uncertainty when an event is detected. A belief value is therefore associated with the semantics and the detection of composite events. This belief value is generated by a consensus among participating entities in a computer network. The scheme taps into in-network processing capabilities of pervasive computer networks and can withstand missing or conflicting information gathered from multiple participating entities. Thus, this dissertation advances knowledge in the field of network management by facilitating the full utilization of characteristics offered by pervasive, distributed and wireless technologies in contemporary and future computer networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As the universe of knowledge and subjects change over time, indexing languages like classification schemes, accommodate that change by restructuring. Restructuring indexing languages affects indexer and cataloguer work. Subjects may split or lump together. They may disappear only to reappear later. And new subjects may emerge that were assumed to be already present, but not clearly articulated (Miksa, 1998). In this context we have the complex relationship between the indexing language, the text being described, and the already described collection (Tennis, 2007). It is possible to imagine indexers placing a document into an outdated class, because it is the one they have already used for their collection. However, doing this erases the semantics in the present indexing language. Given this range of choice in the context of indexing language change, the question arises, what does this look like in practice? How often does this occur? Further, what does this phenomenon tell us about subjects in indexing languages? Does the practice we observe in the reaction to indexing language change provide us evidence of conceptual models of subjects and subject creation? If it is incomplete, but gets us close, what evidence do we still require?