947 resultados para species distribution monitoring


Relevância:

90.00% 90.00%

Publicador:

Resumo:

El principal objectiu del projecte era desenvolupar millores conceptuals i metodològiques que permetessin una millor predicció dels canvis en la distribució de les espècies (a una escala de paisatge) derivats de canvis ambientals en un context dominat per pertorbacions. En un primer estudi, vàrem comparar l'eficàcia de diferents models dinàmics per a predir la distribució de l'hortolà (Emberiza hortulana). Els nostres resultats indiquen que un model híbrid que combini canvis en la qualitat de l'hàbitat, derivats de canvis en el paisatge, amb un model poblacional espacialment explícit és una aproximació adequada per abordar canvis en la distribució d'espècies en contextos de dinàmica ambiental elevada i una capacitat de dispersió limitada de l'espècie objectiu. En un segon estudi abordarem la calibració mitjançant dades de seguiment de models de distribució dinàmics per a 12 espècies amb preferència per hàbitats oberts. Entre les conclusions extretes destaquem: (1) la necessitat de que les dades de seguiment abarquin aquelles àrees on es produeixen els canvis de qualitat; (2) el biaix que es produeix en la estimació dels paràmetres del model d'ocupació quan la hipòtesi de canvi de paisatge o el model de qualitat d'hàbitat són incorrectes. En el darrer treball estudiarem el possible impacte en 67 espècies d’ocells de diferents règims d’incendis, definits a partir de combinacions de nivells de canvi climàtic (portant a un augment esperat de la mida i freqüència d’incendis forestals), i eficiència d’extinció per part dels bombers. Segons els resultats dels nostres models, la combinació de factors antropogènics del regim d’incendis, tals com l’abandonament rural i l’extinció, poden ser més determinants per als canvis de distribució que els efectes derivats del canvi climàtic. Els productes generats inclouen tres publicacions científiques, una pàgina web amb resultats del projecte i una llibreria per a l'entorn estadístic R.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Given the rate of projected environmental change for the 21st century, urgent adaptation and mitigation measures are required to slow down the on-going erosion of biodiversity. Even though increasing evidence shows that recent human-induced environmental changes have already triggered species' range shifts, changes in phenology and species' extinctions, accurate projections of species' responses to future environmental changes are more difficult to ascertain. This is problematic, since there is a growing awareness of the need to adopt proactive conservation planning measures using forecasts of species' responses to future environmental changes. There is a substantial body of literature describing and assessing the impacts of various scenarios of climate and land-use change on species' distributions. Model predictions include a wide range of assumptions and limitations that are widely acknowledged but compromise their use for developing reliable adaptation and mitigation strategies for biodiversity. Indeed, amongst the most used models, few, if any, explicitly deal with migration processes, the dynamics of population at the "trailing edge" of shifting populations, species' interactions and the interaction between the effects of climate and land-use. In this review, we propose two main avenues to progress the understanding and prediction of the different processes A occurring on the leading and trailing edge of the species' distribution in response to any global change phenomena. Deliberately focusing on plant species, we first explore the different ways to incorporate species' migration in the existing modelling approaches, given data and knowledge limitations and the dual effects of climate and land-use factors. Secondly, we explore the mechanisms and processes happening at the trailing edge of a shifting species' distribution and how to implement them into a modelling approach. We finally conclude this review with clear guidelines on how such modelling improvements will benefit conservation strategies in a changing world. (c) 2007 Rubel Foundation, ETH Zurich. Published by Elsevier GrnbH. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Species distribution models (SDMs) are increasingly proposed to support conservation decision making. However, evidence of SDMs supporting solutions for on-ground conservation problems is still scarce in the scientific literature. Here, we show that successful examples exist but are still largely hidden in the grey literature, and thus less accessible for analysis and learning. Furthermore, the decision framework within which SDMs are used is rarely made explicit. Using case studies from biological invasions, identification of critical habitats, reserve selection and translocation of endangered species, we propose that SDMs may be tailored to suit a range of decision-making contexts when used within a structured and transparent decision-making process. To construct appropriate SDMs to more effectively guide conservation actions, modellers need to better understand the decision process, and decision makers need to provide feedback to modellers regarding the actual use of SDMs to support conservation decisions. This could be facilitated by individuals or institutions playing the role of 'translators' between modellers and decision makers. We encourage species distribution modellers to get involved in real decision-making processes that will benefit from their technical input; this strategy has the potential to better bridge theory and practice, and contribute to improve both scientific knowledge and conservation outcomes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An important statistical development of the last 30 years has been the advance in regression analysis provided by generalized linear models (GLMs) and generalized additive models (GAMs). Here we introduce a series of papers prepared within the framework of an international workshop entitled: Advances in GLMs/GAMs modeling: from species distribution to environmental management, held in Riederalp, Switzerland, 6-11 August 2001.We first discuss some general uses of statistical models in ecology, as well as provide a short review of several key examples of the use of GLMs and GAMs in ecological modeling efforts. We next present an overview of GLMs and GAMs, and discuss some of their related statistics used for predictor selection, model diagnostics, and evaluation. Included is a discussion of several new approaches applicable to GLMs and GAMs, such as ridge regression, an alternative to stepwise selection of predictors, and methods for the identification of interactions by a combined use of regression trees and several other approaches. We close with an overview of the papers and how we feel they advance our understanding of their application to ecological modeling.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Abiotic factors such as climate and soil determine the species fundamental niche, which is further constrained by biotic interactions such as interspecific competition. To parameterize this realized niche, species distribution models (SDMs) most often relate species occurrence data to abiotic variables, but few SDM studies include biotic predictors to help explain species distributions. Therefore, most predictions of species distributions under future climates assume implicitly that biotic interactions remain constant or exert only minor influence on large-scale spatial distributions, which is also largely expected for species with high competitive ability. We examined the extent to which variance explained by SDMs can be attributed to abiotic or biotic predictors and how this depends on species traits. We fit generalized linear models for 11 common tree species in Switzerland using three different sets of predictor variables: biotic, abiotic, and the combination of both sets. We used variance partitioning to estimate the proportion of the variance explained by biotic and abiotic predictors, jointly and independently. Inclusion of biotic predictors improved the SDMs substantially. The joint contribution of biotic and abiotic predictors to explained deviance was relatively small (similar to 9%) compared to the contribution of each predictor set individually (similar to 20% each), indicating that the additional information on the realized niche brought by adding other species as predictors was largely independent of the abiotic (topo-climatic) predictors. The influence of biotic predictors was relatively high for species preferably growing under low disturbance and low abiotic stress, species with long seed dispersal distances, species with high shade tolerance as juveniles and adults, and species that occur frequently and are dominant across the landscape. The influence of biotic variables on SDM performance indicates that community composition and other local biotic factors or abiotic processes not included in the abiotic predictors strongly influence prediction of species distributions. Improved prediction of species' potential distributions in future climates and communities may assist strategies for sustainable forest management.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mountain ranges are biodiversity hotspots worldwide and provide refuge to many organisms under contemporary climate change. Gathering field information on mountain biodiversity over time is of primary importance to understand the response of biotic communities to climate changes. For plants, several long-term observation sites and networks of mountain biodiversity are emerging worldwide to gather field data and monitor altitudinal range shifts and community composition changes under contemporary climate change. Most of these monitoring sites, however, focus on alpine ecosystems and mountain summits, such as the global observation research initiative in alpine environments (GLORIA). Here we describe the Alps Vegetation Database, a comprehensive community level archive (GIVD ID EU-00-014) which aims at compiling all available geo-referenced vegetation plots from lowland forests to alpine grasslands across the greatest mountain range in Europe: the Alps. This research initiative was funded between 2008 and 2011 by the Danish Council for Independent Research and was part of a larger project to compare cross-scale plant community structure between the Alps and the Scandes. The Alps Vegetation Database currently harbours 35,731 geo-referenced vegetation plots and 5,023 valid taxa across Mediterranean, temperate and alpine environments. The data are mainly used by the main contributors of the Alps Vegetation Database in an ecoinformatics approach to test hypotheses related to plant macroecology and biogeography, but external proposals for joint collaborations are welcome.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Spatial evaluation of Culicidae (Diptera) larvae from different breeding sites: application of a geospatial method and implications for vector control. This study investigates the spatial distribution of urban Culicidae and informs entomological monitoring of species that use artificial containers as larval habitats. Collections of mosquito larvae were conducted in the São Paulo State municipality of Santa Bárbara d' Oeste between 2004 and 2006 during house-to-house visits. A total of 1,891 samples and nine different species were sampled. Species distribution was assessed using the kriging statistical method by extrapolating municipal administrative divisions. The sampling method followed the norms of the municipal health services of the Ministry of Health and can thus be adopted by public health authorities in disease control and delimitation of risk areas. Moreover, this type of survey and analysis can be employed for entomological surveillance of urban vectors that use artificial containers as larval habitat.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Many studies have forecasted the possible impact of climate change on plant distribution using models based on ecological niche theory. In their basic implementation, niche-based models do not constrain predictions by dispersal limitations. Hence, most niche-based modelling studies published so far have assumed dispersal to be either unlimited or null. However, depending on the rate of climatic change, the landscape fragmentation and the dispersal capabilities of individual species, these assumptions are likely to prove inaccurate, leading to under- or overestimation of future species distributions and yielding large uncertainty between these two extremes. As a result, the concepts of "potentially suitable" and "potentially colonisable" habitat are expected to differ significantly. To quantify to what extent these two concepts can differ, we developed MIGCLIM, a model simulating plant dispersal under climate change and landscape fragmentation scenarios. MIGCLIM implements various parameters, such as dispersal distance, increase in reproductive potential over time, barriers to dispersal or long distance dispersal. Several simulations were run for two virtual species in a study area of the western Swiss Alps, by varying dispersal distance and other parameters. Each simulation covered the hundred-year period 2001-2100 and three different IPCC-based temperature warming scenarios were considered. Our results indicate that: (i) using realistic parameter values, the future potential distributions generated using MIGCLIM can differ significantly (up to more than 95% decrease in colonized surface) from those that ignore dispersal; (ii) this divergence increases both with increasing climate warming and over longer time periods; (iii) the uncertainty associated with the warming scenario can be nearly as large as the one related to dispersal parameters; (iv) accounting for dispersal, even roughly, can importantly reduce uncertainty in projections.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

1. Identifying those areas suitable for recolonization by threatened species is essential to support efficient conservation policies. Habitat suitability models (HSM) predict species' potential distributions, but the quality of their predictions should be carefully assessed when the species-environment equilibrium assumption is violated.2. We studied the Eurasian otter Lutra lutra, whose numbers are recovering in southern Italy. To produce widely applicable results, we chose standard HSM procedures and looked for the models' capacities in predicting the suitability of a recolonization area. We used two fieldwork datasets: presence-only data, used in the Ecological Niche Factor Analyses (ENFA), and presence-absence data, used in a Generalized Linear Model (GLM). In addition to cross-validation, we independently evaluated the models with data from a recolonization event, providing presences on a previously unoccupied river.3. Three of the models successfully predicted the suitability of the recolonization area, but the GLM built with data before the recolonization disagreed with these predictions, missing the recolonized river's suitability and badly describing the otter's niche. Our results highlighted three points of relevance to modelling practices: (1) absences may prevent the models from correctly identifying areas suitable for a species spread; (2) the selection of variables may lead to randomness in the predictions; and (3) the Area Under Curve (AUC), a commonly used validation index, was not well suited to the evaluation of model quality, whereas the Boyce Index (CBI), based on presence data only, better highlighted the models' fit to the recolonization observations.4. For species with unstable spatial distributions, presence-only models may work better than presence-absence methods in making reliable predictions of suitable areas for expansion. An iterative modelling process, using new occurrences from each step of the species spread, may also help in progressively reducing errors.5. Synthesis and applications. Conservation plans depend on reliable models of the species' suitable habitats. In non-equilibrium situations, such as the case for threatened or invasive species, models could be affected negatively by the inclusion of absence data when predicting the areas of potential expansion. Presence-only methods will here provide a better basis for productive conservation management practices.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The distribution of plants along environmental gradients is constrained by abiotic and biotic factors. Cumulative evidence attests of the impact of biotic factors on plant distributions, but only few studies discuss the role of belowground communities. Soil fungi, in particular, are thought to play an important role in how plant species assemble locally into communities. We first review existing evidence, and then test the effect of the number of soil fungal operational taxonomic units (OTUs) on plant species distributions using a recently collected dataset of plant and metagenomic information on soil fungi in the Western Swiss Alps. Using species distribution models (SDMs), we investigated whether the distribution of individual plant species is correlated to the number of OTUs of two important soil fungal classes known to interact with plants: the Glomeromycetes, that are obligatory symbionts of plants, and the Agaricomycetes, that may be facultative plant symbionts, pathogens, or wood decayers. We show that including the fungal richness information in the models of plant species distributions improves predictive accuracy. Number of fungal OTUs is especially correlated to the distribution of high elevation plant species. We suggest that high elevation soil show greater variation in fungal assemblages that may in turn impact plant turnover among communities. We finally discuss how to move beyond correlative analyses, through the design of field experiments manipulating plant and fungal communities along environmental gradients.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

There is a debate on whether an influence of biotic interactions on species distributions can be reflected at macro-scale levels. Whereas the influence of biotic interactions on spatial arrangements is beginning to be studied at local scales, similar studies at macro-scale levels are scarce. There is no example disentangling, from other similarities with related species, the influence of predator-prey interactions on species distributions at macro-scale levels. In this study we aimed to disentangle predator-prey interactions from species distribution data following an experimental approach including a factorial design. As a case of study we selected the short-toed eagle because of its known specialization on certain prey reptiles. We used presence-absence data at a 100 Km2 spatial resolution to extract the explanatory capacity of different environmental predictors (five abiotic and two biotic predictors) on the short-toed eagle species distribution in Peninsular Spain. Abiotic predictors were relevant climatic and topographic variables, and relevant biotic predictors were prey richness and forest density. In addition to the short-toed eagle, we also obtained the predictor's explanatory capacities for i) species of the same family Accipitridae (as a reference), ii) for other birds of different families (as controls) and iii) species with randomly selected presences (as null models). We run 650 models to test for similarities of the short-toed eagle, controls and null models with reference species, assessed by regressions of explanatory capacities. We found higher similarities between the short-toed eagle and other species of the family Accipitridae than for the other two groups. Once corrected by the family effect, our analyses revealed a signal of predator-prey interaction embedded in species distribution data. This result was corroborated with additional analyses testing for differences in the concordance between the distributions of different bird categories and the distributions of either prey or non-prey species of the short-toed eagle. Our analyses were useful to disentangle a signal of predator-prey interactions from species distribution data at a macro-scale. This study highlights the importance of disentangling specific features from the variation shared with a given taxonomic level.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Identifying the geographic distribution of populations is a basic, yet crucial step in many fundamental and applied ecological projects, as it provides key information on which many subsequent analyses depend. However, this task is often costly and time consuming, especially where rare species are concerned and where most sampling designs generally prove inefficient. At the same time, rare species are those for which distribution data are most needed for their conservation to be effective. To enhance fieldwork sampling, model-based sampling (MBS) uses predictions from species distribution models: when looking for the species in areas of high habitat suitability, chances should be higher to find them. We thoroughly tested the efficiency of MBS by conducting an important survey in the Swiss Alps, assessing the detection rate of three rare and five common plant species. For each species, habitat suitability maps were produced following an ensemble modeling framework combining two spatial resolutions and two modeling techniques. We tested the efficiency of MBS and the accuracy of our models by sampling 240 sites in the field (30 sitesx8 species). Across all species, the MBS approach proved to be effective. In particular, the MBS design strictly led to the discovery of six sites of presence of one rare plant, increasing chances to find this species from 0 to 50%. For common species, MBS doubled the new population discovery rates as compared to random sampling. Habitat suitability maps coming from the combination of four individual modeling methods predicted well the species' distribution and more accurately than the individual models. As a conclusion, using MBS for fieldwork could efficiently help in increasing our knowledge of rare species distribution. More generally, we recommend using habitat suitability models to support conservation plans.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aim Species distribution models (SDMs) based on current species ranges underestimate the potential distribution when projected in time and/or space. A multi-temporal model calibration approach has been suggested as an alternative, and we evaluate this using 13,000 years of data. Location Europe. Methods We used fossil-based records of presence for Picea abies, Abies alba and Fagus sylvatica and six climatic variables for the period 13,000 to 1000yr bp. To measure the contribution of each 1000-year time step to the total niche of each species (the niche measured by pooling all the data), we employed a principal components analysis (PCA) calibrated with data over the entire range of possible climates. Then we projected both the total niche and the partial niches from single time frames into the PCA space, and tested if the partial niches were more similar to the total niche than random. Using an ensemble forecasting approach, we calibrated SDMs for each time frame and for the pooled database. We projected each model to current climate and evaluated the results against current pollen data. We also projected all models into the future. Results Niche similarity between the partial and the total-SDMs was almost always statistically significant and increased through time. SDMs calibrated from single time frames gave different results when projected to current climate, providing evidence of a change in the species realized niches through time. Moreover, they predicted limited climate suitability when compared with the total-SDMs. The same results were obtained when projected to future climates. Main conclusions The realized climatic niche of species differed for current and future climates when SDMs were calibrated considering different past climates. Building the niche as an ensemble through time represents a way forward to a better understanding of a species' range and its ecology in a changing climate.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mountain ecosystems will likely be affected by global warming during the 21st century, with substantial biodiversity loss predicted by species distribution models (SDMs). Depending on the geographic extent, elevation range and spatial resolution of data used in making these models, different rates of habitat loss have been predicted, with associated risk of species extinction. Few coordinated across-scale comparisons have been made using data of different resolution and geographic extent. Here, we assess whether climate-change induced habitat losses predicted at the European scale (10x10' grid cells) are also predicted from local scale data and modeling (25x25m grid cells) in two regions of the Swiss Alps. We show that local-scale models predict persistence of suitable habitats in up to 100% of species that were predicted by a European-scale model to lose all their suitable habitats in the area. Proportion of habitat loss depends on climate change scenario and study area. We find good agreement between the mismatch in predictions between scales and the fine-grain elevation range within 10x10' cells. The greatest prediction discrepancy for alpine species occurs in the area with the largest nival zone. Our results suggest elevation range as the main driver for the observed prediction discrepancies. Local scale projections may better reflect the possibility for species to track their climatic requirement toward higher elevations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Indirect topographic variables have been used successfully as surrogates for disturbance processes in plant species distribution models (SDM) in mountain environments. However, no SDM studies have directly tested the performance of disturbance variables. In this study, we developed two disturbance variables: a geomorphic index (GEO) and an index of snow redistribution by wind (SNOW). These were developed in order to assess how they improved both the fit and predictive power of presenceabsence SDM based on commonly used topoclimatic (TC) variables for 91 plants in the Western Swiss Alps. The individual contribution of the disturbance variables was compared to TC variables. Maps of models were prepared to spatially test the effect of disturbance variables. On average, disturbance variables significantly improved the fit but not the predictive power of the TC models and their individual contribution was weak (5.6% for GEO and 3.3% for SNOW). However their maximum individual contribution was important (24.7% and 20.7%). Finally, maps including disturbance variables (i) were significantly divergent from TC models in terms of predicted suitable surfaces and connectivity between potential habitats, and (ii) were interpreted as more ecologically relevant. Disturbance variables did not improve the transferability of models at the local scale in a complex mountain system, and the performance and contribution of these variables were highly species-specific. However, improved spatial projections and change in connectivity are important issues when preparing projections under climate change because the future range size of the species will determine the sensitivity to changing conditions.