867 resultados para species distribution models
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Assessment of the suitability of anthropogenic landscapes for wildlife species is crucial for setting priorities for biodiversity conservation. This study aimed to analyse the environmental suitability of a highly fragmented region of the Brazilian Atlantic Forest, one of the world's 25 recognized biodiversity hotspots, for forest bird species. Eight forest bird species were selected for the analyses, based on point counts (n = 122) conducted in April-September 2006 and January-March 2009. Six additional variables (landscape diversity, distance from forest and streams, aspect, elevation and slope) were modelled in Maxent for (1) actual and (2) simulated land cover, based on the forest expansion required by existing Brazilian forest legislation. Models were evaluated by bootstrap or jackknife methods and their performance was assessed by AUC, omission error, binomial probability or p value. All predictive models were statistically significant, with high AUC values and low omission errors. A small proportion of the actual landscape (24.41 +/- 6.31%) was suitable for forest bird species. The simulated landscapes lead to an increase of c. 30% in total suitable areas. In average, models predicted a small increase (23.69 +/- 6.95%) in the area of suitable native forest for bird species. Being close to forest increased the environmental suitability of landscapes for all bird species; landscape diversity was also a significant factor for some species. In conclusion, this study demonstrates that species distribution modelling (SDM) successfully predicted bird distribution across a heterogeneous landscape at fine spatial resolution, as all models were biologically relevant and statistically significant. The use of landscape variables as predictors contributed significantly to the results, particularly for species distributions over small extents and at fine scales. This is the first study to evaluate the environmental suitability of the remaining Brazilian Atlantic Forest for bird species in an agricultural landscape, and provides important additional data for regional environmental planning.
Resumo:
Documenting changes in distribution is necessary for understanding species' response to environmental changes, but data on species distributions are heterogeneous in accuracy and resolution. Combining different data sources and methodological approaches can fill gaps in knowledge about the dynamic processes driving changes in species-rich, but data-poor regions. We combined recent bird survey data from the Neotropical Biodiversity Mapping Initiative (NeoMaps) with historical distribution records to estimate potential changes in the distribution of eight species of Amazon parrots in Venezuela. Using environmental covariates and presence-only data from museum collections and the literature, we first used maximum likelihood to fit a species distribution model (SDM) estimating a historical maximum probability of occurrence for each species. We then used recent, NeoMaps survey data to build single-season occupancy models (OM) with the same environmental covariates, as well as with time- and effort-dependent detectability, resulting in estimates of the current probability of occurrence. We finally calculated the disagreement between predictions as a matrix of probability of change in the state of occurrence. Our results suggested negative changes for the only restricted, threatened species, Amazona barbadensis, which has been independently confirmed with field studies. Two of the three remaining widespread species that were detected, Amazona amazonica, Amazona ochrocephala, also had a high probability of negative changes in northern Venezuela, but results were not conclusive for Amazona farinosa. The four remaining species were undetected in recent field surveys; three of these were most probably absent from the survey locations (Amazona autumnalis, Amazona mercenaria and Amazona festiva), while a fourth (Amazona dufresniana) requires more intensive targeted sampling to estimate its current status. Our approach is unique in taking full advantage of available, but limited data, and in detecting a high probability of change even for rare and patchily-distributed species. However, it is presently limited to species meeting the strong assumptions required for maximum-likelihood estimation with presence-only data, including very high detectability and representative sampling of its historical distribution.
Resumo:
Understanding species distribution patterns and the corresponding environmental determinants is a crucial step in the development of effective strategies for the conservation and management of plant communities and ecosystems. Therefore, a central prerequisite is the biogeographical and macroecological analysis of factors and processes that determine contemporary, potential, as well as future geographic distribution of species. This thesis has been conducted in the framework of the BIOMAPS-BIOTA project at the Nees Institute of Biodiversity of Plants, which was funded by the German Federal Ministry of Education and Research (BMBF). The study investigated patterns of plants species richness and phytogeographic regions under contemporary environmental conditions and forecasted future climate change in the area of West Africa covering five countries: Benin, Burkina Faso, Côte d'Ivoire, Ghana and Togo. Firstly, geographic patterns of vascular plant species richness have been depicted at a relatively fine spatial resolution based on the potential distribution of 3,393 species. Species richness is closely related to the steep climatic gradient existing in the region with a high concentration of species in the most humid areas in the south and decreases towards the northern drier areas. The investigation of the effectiveness of the existing network of protected areas shows an overall good coverage of species in the study area. However, the proportion of covered species is considerably lower at national extent for some countries, thus calling for more protected areas in order to cover adequately a maximum number of plants species in these countries. Secondly, based on the potential distribution range of vascular plant species, seven phytogeographic regions have been delineated that broadly reflect the vegetation zones as defined by White (1983). However notable differences to the delineation of White (1983) occur at the margins of some regions. Corresponding to a general southward shifted of all regions. And expansion of the Sahel vegetation zone is observed in the north, while the rainforest zone is decreased in the very south.This is alarming since the rainforest shelters a high number of species and a high proportion of range-restricted or endemic species, despite their relatively small extent compared to the other regions. Finally, the evaluation of the potential impact of climate change on plant species richness in the study area, results in a severe loss of future suitable habitat for up to 50% of species per grid cell, particularly in the rainforest region. Moreover, the analysis of the possible shift of phytogeographic regions shows in general a strong deterioration of the West African rainforest. In contrast the drier areas are expanding continuously, although a slight gain in species number can be observed in some particular regions. The overall lesson to retain from the results of this study is that the West African rainforest should be fixed as a high priority area for the conservation of biodiversity of plants, since it is subject to severe contemporary and projected future threats.
Resumo:
Forest connectivity restoration is a major goal in natural resource planning. Given the high amount of abandoned cultivated lands, setting efficient methods for the reforestation of agricultural lands offers a good opportunity to face this issue. However, reforestations must be carefully planned, which poses two main challenges. In first place, to determine those agricultural lands that, once reforested, would meet more effectively the planning goals. As a further step, in order to grant the success of the activity, it is fairly advisable to select those tree species that are more adapted to each particular environment. Here we intend to give response to both requirements by proposing a sequential and integrated methodology that has been implemented in two Spanish forest districts, which are formed by several landscape types that were previously defined and characterized. Using the software Conefor Sensinode, a powerful tool for quantifying habitat availability that is based on graph theory concepts, we determined the landscapes where forest planning should have connectivity as a major concern and, afterwards, we detected the agricultural patches that would contribute most to enhance connectivity if they were reforested. The subsequent reforestation species assessment was performed within these priority patches. Using penalized logistic regressions we fitted ecological niche models for the Spanish native tree species. The models were trained with species distribution data from the Spanish Forest Map and used climatic and lithological variables as predictors. Model predictions were used to build ordered lists of suitable species for each priority patch. The lists include dominant and non dominant tree species and allow adding biodiversity goals to the reforestation planning. The result of this combined methodology is a map of agricultural patches that would contribute most to uphold forest connectivity if they were reforested and a list of suitable tree species for each patch ordered by occurrence probability. Therefore the proposed methodology may be useful for suitable and efficient forest planning and landscape designing.
Resumo:
Abstract The cloud forest is a special type of forest ecosystem that depends on suitable conditions of humidity and temperature to exist; hence, it is a very fragile ecosystem. The cloud forest is also one of the richest ecosystems in terms of species diversity and rate of endemism. However, today, it is one of the most threatened ecosystems in the world. Little is known about tree species distribution and coexistence among cloud forest trees. Trees are essential to understanding ecosystem functioning and maintenance because they support the ecosystem in important ways. For this dissertation, an analysis of woody plant species distribution at a small scale in a north-Peruvian Andean cloud forest was performed, and some of the factors implicated in the observed patterns were identified. Towards that end, different natural factors acting on species distribution within the forest were investigated: (i) intra-specific arrangements, (ii) heterospecific spatial relationships and (iii) relationships with external environmental factors. These analyses were conducted first on standing woody plants and then on seedlings. The woody plants were found to be clumped in the forest, either considering all the species together or each species separately. However, each species presented a specific pattern and specific spatial relationship among different-age individuals. Dispersal mode, growth form and shade tolerance played roles in the final distribution of the species. Furthermore, spatial associations among species, either positive or negative, were observed. These associations were more numerous when considering individuals of the interacting species at different developmental stages, i.e., younger individuals from one species and older individuals from another. Accordingly, competition and facilitation are asymmetric processes and vary throughout the life of an individual. Moreover, some species appear to prefer certain habitat conditions and avoid other habitats. The habitat definition that best explains species distribution is that which includes both environmental and stand characteristics; thus, a combination of these factors is necessary to understanding species' niche preferences. Seedling distribution was also associated with habitat conditions, but these conditions explained less than the 30% of the spatial variation. The position of conspecific adult individuals also affected seedling distribution; although the seedlings of many tree species avoid the vicinity of conspecifics, a few species appeared to prefer the formation of cohorts around their parent trees. The importance of habitat conditions and distance dependence with conspecifics varied among regions within the forest as well as on the developmental stage of the stand. The results from this thesis suggest that different species can coexist within a given space, forming a “puzzle” of species as a result of the intra- and interspecific spatial relationships along with niche preferences and adaptations that operate at different scales. These factors not only affect each species in a different way, but specific preferences also vary throughout species' lifespans. Resumen Resumen El bosque de niebla es uno de los ecosistemas más amenazados del mundo además de ser uno de los más frágiles. Son formaciones azonales que dependen de la existencia de unas condiciones de humedad y temperatura que permitan la formación de nubes que cubran el bosque; lo que dificulta en gran medida su conservación. También es uno de los ecosistemas con mayor riqueza de especies además de tener uno de los mayores porcentajes de endemismos. Uno de los aspectos más importantes para entender el ecosistema, es identificar y entender los elementos que lo componen y los mecanismos que regulan las relaciones entre ellos. Los árboles son el soporte del ecosistema. Sin embargo, apenas hay información sobre la distribución y coexistencia de los árboles en los bosques de niebla. Esta tesis presenta un análisis de la distribución a pequeña escala de las plantas leñosas en un bosque de niebla situado en la cordillera andina del norte de Perú; así como el análisis de algunos de los factores que pueden estar implicados en que se origine la distribución observada. Para este propósito se estudia cómo influyen factores de diferente naturaleza en la distribución de las especies (i) organización intra-específica (ii) relaciones espaciales heterospecíficas y (iii) relación con factores ambientales externos. En estos análisis se estudiaron primero las plantas jóvenes y las adultas, y después las plántulas. Los árboles aparecieron agregados en el bosque, tanto considerando todos a la vez como cuando se estudió cada especie por separado. Sin embargo, cada especie mostró un patrón distinto así como una particular relación espacial entre individuos jóvenes y adultos. El modo de dispersión, la forma de vida y la tolerancia de la especies estuvieron relacionados con el patrón general observado. Se vio también que ciertas especies aparecían relacionadas con otras, tanto de forma positiva (compartiendo zonas) como negativa (apareciendo en áreas distintas). Las asociaciones fueron mucho más numerosas cuando se consideraron los pares de especies en diferente estado de desarrollo, es decir, individuos jóvenes de una especie e individuos mayores de la otra. Eso indicaría que los procesos de competencia y facilitación son asimétricos y además varían durante la vida de la planta. Por otro lado, algunas especies aparecen preferentemente bajo ciertas condiciones de hábitat y evitan otras. La definición de hábitat a la que mejor responden las especies es cuando se incluyen tanto variables ambientales como de masa; así que ambos tipos de variables son necesarias para entender la preferencia de las especies por ciertos nichos. La distribución de las plántulas también estuvo relacionada con condiciones de hábitat, pero eso sólo llegaba a explicar hasta un 30% de la variabilidad espacial. La posición de los adultos de la misma especie también afectó a la distribución de las plántulas. En bastantes especies las plántulas evitan la cercanía de adultos de su misma especie, padres potenciales, aunque algunas especies aisladas mostraron el patrón contrario y aparecieron preferentemente en las mismas áreas que sus padres. La importancia de las condiciones de hábitat y posición de los adultos en la disposición de las plántulas varía de una zona a otra del bosque y además también varía según el estado de desarrollo de la masa.
Resumo:
The wide range of morphological variations in the “loxurina group” makes taxa identification difficult, and despite several reviews, serious taxonomical confusion remains. We make use of DNA data in conjunction with morphological appearance and available information on species distribution to delimit the boundaries of the “loxurina” group species previously established based on morphology. A fragment of 635 base pairs within the mtDNA gene cytochrome oxidase I (COI) was analysed for seven species of the “loxurina group”. Phylogenetic relationships among the included taxa were inferred using maximum parsimony and maximum likelihood methods. Penaincisalia sigsiga (Bálint et al), P. cillutincarae (Draudt), P. atymna (Hewitson) and P. loxurina (C. Felder & R. Felder) were easily delimited as the morphological, geographic and molecular data were congruent. Penaincisalia ludovica (Bálint & Wojtusiak) and P. loxurina astillero (Johnson) represent the same entity and constitute a sub-species of P. loxurina. However, incongruence among morphological, genetic, and geographic data is shown in P. chachapoya (Bálint & Wojtusiak) and P. tegulina (Bálint et al). Our results highlight that an integrative approach is needed to clarify the taxonomy of these neotropical taxa, but more genetic and geographical studies are still required.
Resumo:
Data on the occurrence of species are widely used to inform the design of reserve networks. These data contain commission errors (when a species is mistakenly thought to be present) and omission errors (when a species is mistakenly thought to be absent), and the rates of the two types of error are inversely related. Point locality data can minimize commission errors, but those obtained from museum collections are generally sparse, suffer from substantial spatial bias and contain large omission errors. Geographic ranges generate large commission errors because they assume homogenous species distributions. Predicted distribution data make explicit inferences on species occurrence and their commission and omission errors depend on model structure, on the omission of variables that determine species distribution and on data resolution. Omission errors lead to identifying networks of areas for conservation action that are smaller than required and centred on known species occurrences, thus affecting the comprehensiveness, representativeness and efficiency of selected areas. Commission errors lead to selecting areas not relevant to conservation, thus affecting the representativeness and adequacy of reserve networks. Conservation plans should include an estimation of commission and omission errors in underlying species data and explicitly use this information to influence conservation planning outcomes.
Resumo:
We modelled the distributions of two toads (Bufo bufo and Epidalea calamita) in the Iberian Peninsula using the favourability function, which makes predictions directly comparable for different species and allows fuzzy logic operations to relate different models. The fuzzy intersection between individual models, representing favourability for the presence of both species simultaneously, was compared with another favourability model built on the presences shared by both species. The fuzzy union between individual models, representing favourability for the presence of any of the two species, was compared with another favourabilitymodel based on the presences of either or both of them. The fuzzy intersections between favourability for each species and the complementary of favourability for the other (corresponding to the logical operation “A and not B”) were compared with models of exclusive presence of one species versus the exclusive presence of the other. The results of modelling combined species data were highly similar to those of fuzzy logic operations between individual models, proving fuzzy logic and the favourability function valuable for comparative distribution modelling. We highlight several advantages of fuzzy logic over other forms of combining distribution models, including the possibility to combine multiple species models for management and conservation planning.
Resumo:
Although on a local scale Iberian lynx distribution is determined by the availability of prey rabbits, recent modelling analyses have uncovered broad-scale disagreements between these two species’ distribution trends. These analyses showed also that the lynx had become restricted to only a fraction of the rabbit’s genetic diversity, and that this could be jeopardising its survival in the face of environmental hazards and uncertainty. In the present paper, a follow-up was carried out through the building of lynx and rabbit distribution models based on the most recent Spanish mammal atlas. Environmental favourability values for lynx and rabbit were positively correlated within the lynx’s current distribution area, but they were negatively correlated within the total Spanish area where lynx used to occur in the 1980’s. Environmental favourability for rabbits was significantly higher where lynx maintains reproductive populations than where it recently disappeared, indicating that rabbit favourability plays an important role and can be a good predictor of lynx persistence. The lynx and rabbit models were extrapolated to predict favourable areas for both species in Spain as well as in Portugal, on the original scale of the distribution data (10x10 km) and on a 100 times finer spatial resolution (1x1 km). The lynx and rabbit models were also combined through fuzzy logic to forecast the potential for lynx occurrence incorporating information on favourable areas for its main prey. Several areas are proposed as favourable for lynx expansion or re-introduction,
Resumo:
Transferring distribution models between different geographical areas may be problematic, as the performance of models outside their original scope is hard to predict. A modelling procedure is needed that gets the gist of the environmental descriptors of a distribution area, without either overfitting to the training data or overestimating the species’ distribution potential.We tested the transferability power of the favourability function, a generalized linear model, on the distribution of the Iberian desman (Galemys pyrenaicus) in the Iberian territories of Portugal and Spain.We also tested the effects of two of the main potential constraints on model transferability: the analysed ranges of the predictor variables, and the completeness of the species distribution data. We modelled 10 km×10km presence/absence data from Portugal and Spain separately, extrapolated each model to the other country, and compared predictions with observations. The Spanish model, despite arguably containing more false absences, showed good predictive ability in Portugal. The Portuguese model, whose predictors ranged between only a subset of the values observed in Spain, overestimated desman distribution when transferred.We discuss possible reasons for this differential model behaviour, and highlight the importance of this kind of models for prediction and conservation applications
Resumo:
The measurement error model is a well established statistical method for regression problems in medical sciences, although rarely used in ecological studies. While the situations in which it is appropriate may be less common in ecology, there are instances in which there may be benefits in its use for prediction and estimation of parameters of interest. We have chosen to explore this topic using a conditional independence model in a Bayesian framework using a Gibbs sampler, as this gives a great deal of flexibility, allowing us to analyse a number of different models without losing generality. Using simulations and two examples, we show how the conditional independence model can be used in ecology, and when it is appropriate.
Resumo:
Organisations at the centre of the state’s industry, such as Screen Queensland, have undergone substantial and ongoing changes in the last five years. Other organisations funded by Screen Queensland, such as QPIX, Queensland’s only film development centre, have recently closed. The Brisbane International Film Festival has been restructured to become the Brisbane Asia Pacific Film Festival as of 2014. In an uncertain industry currently characterised by limited funding and diminishing support structures, local emerging filmmakers require significant initiatives and a sophisticated understanding of how to best utilise fledgling distribution models as part of a tailored strategy for their content. This essay includes interviews with emerging Brisbane filmmakers who have used a combination of traditional and contemporary approaches to exhibition and distribution thus far in their careers. It argues that for these filmmakers, while film festivals do function as crucial platforms for exposure, in the current digital market they cannot be relied upon as the only platform in securing further mainstream or commercial release. They can, however, be incorporated into an alternative distribution model that shows awareness of the contemporary situation in Australia. The research findings are arguably indicative of the challenges faced by filmmakers statewide, and suggest that further support strategies need to be considered to revive Queensland’s film culture and provide immediate support for emerging filmmakers. Queensland’s film sector is currently in the midst of significant change.