940 resultados para spatial and temporal variations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-impact, localized intense rainfall episodes represent a major socio-economic problem for societies worldwide, and at the same time these events are notoriously difficult to simulate properly in climate models. Here, the authors investigate how horizontal resolution and model formulation influence this issue by applying the HARMONIE regional climate model (HCLIM) with three different setups; two using convection parameterization at 15 and 6.25 km horizontal resolution (the latter within the “grey-zone” scale), with lateral boundary conditions provided by ERA-Interim reanalysis and integrated over a pan-European domain, and one with explicit convection at 2 km resolution (HCLIM2) over the Alpine region driven by the 15 km model. Seven summer seasons were sampled and validated against two high-resolution observational data sets. All HCLIM versions underestimate the number of dry days and hours by 20-40%, and overestimate precipitation over the Alpine ridge. Also, only modest added value were found of “grey-zone” resolution. However, the single most important outcome is the substantial added value in HCLIM2 compared to the coarser model versions at sub-daily time scales. It better captures the local-to-regional spatial patterns of precipitation reflecting a more realistic representation of the local and meso-scale dynamics. Further, the duration and spatial frequency of precipitation events, as well as extremes, are closer to observations. These characteristics are key ingredients in heavy rainfall events and associated flash floods, and the outstanding results using HCLIM in convection-permitting setting are convincing and encourage further use of the model to study changes in such events in changing climates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The somatic growth dynamics of green turtles ( Chelonia mydas) resident in five separate foraging grounds within the Hawaiian Archipelago were assessed using a robust non-parametric regression modelling approach. The foraging grounds range from coral reef habitats at the north-western end of the archipelago, to coastal habitats around the main islands at the southeastern end of the archipelago. Pelagic juveniles recruit to these neritic foraging grounds from ca. 35 cm SCL or 5 kg ( similar to 6 years of age), but grow at foraging-ground-specific rates, which results in quite different size- and age-specific growth rate functions. Growth rates were estimated for the five populations as change in straight carapace length ( cm SCL year) 1) and, for two of the populations, also as change in body mass ( kg year) 1). Expected growth rates varied from ca. 0 - 2.5 cm SCL year) 1, depending on the foraging-ground population, which is indicative of slow growth and decades to sexual maturity, since expected size of first-time nesters is greater than or equal to 80 cm SCL. The expected size- specific growth rate functions for four populations sampled in the southeastern archipelago displayed a non-monotonic function, with an immature growth spurt at ca. 50 - 53 cm SCL ( similar to 18 - 23 kg) or ca. 13 - 19 years of age. The growth spurt for the Midway atoll population in the northwestern archipelago occurs at a much larger size ( ca. 65 cm SCL or 36 kg), because of slower immature growth rates that might be due to a limited food stock and cooler sea surface temperature. Expected age-at-maturity was estimated to be ca. 35 - 40 years for the four populations sampled at the south-eastern end of the archipelago, but it might well be > 50 years for the Midway population. The Hawaiian stock comprises mainly the same mtDNA haplotype, with no differences in mtDNA stock composition between foraging-ground populations, so that the geographic variability in somatic growth rates within the archipelago is more likely due to local environmental factors rather than genetic factors. Significant temporal variability was also evident, with expected growth rates declining over the last 10 - 20 years, while green turtle abundance within the archipelago has increased significantly since the mid-1970s. This inverse relationship between somatic growth rates and population abundance suggests a density-dependent effect on somatic growth dynamics that has also been reported recently for a Caribbean green turtle stock. The Hawaiian green turtle stock is characterised by slow growth rates displaying significant spatial and temporal variation and an immature growth spurt. This is consistent with similar findings for a Great Barrier Reef green turtle stock that also comprises many foraging-ground populations spanning a wide geographic range.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In broader catchment scale investigations, there is a need to understand and ultimately exploit the spatial variation of agricultural crops for an improved economic return. In many instances, this spatial variation is temporally unstable and may be different for various crop attributes and crop species. In the Australian sugar industry, the opportunity arose to evaluate the performance of 231 farms in the Tully Mill area in far north Queensland using production information on cane yield (t/ha) and CCS ( a fresh weight measure of sucrose content in the cane) accumulated over a 12-year period. Such an arrangement of data can be expressed as a 3-way array where a farm x attribute x year matrix can be evaluated and interactions considered. Two multivariate techniques, the 3-way mixture method of clustering and the 3-mode principal component analysis, were employed to identify meaningful relationships between farms that performed similarly for both cane yield and CCS. In this context, farm has a spatial component and the aim of this analysis was to determine if systematic patterns in farm performance expressed by cane yield and CCS persisted over time. There was no spatial relationship between cane yield and CCS. However, the analysis revealed that the relationship between farms was remarkably stable from one year to the next for both attributes and there was some spatial aggregation of farm performance in parts of the mill area. This finding is important, since temporally consistent spatial variation may be exploited to improve regional production. Alternatively, the putative causes of the spatial variation may be explored to enhance the understanding of sugarcane production in the wet tropics of Australia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The confirmed vector of Ross River virus, Ochlerotatus camptorhynchus (Thomson), is the dominant mosquito species inhabiting saline marshes in coastal Victoria. This paper re-examines previously published data on Oc. camptorhynchus, plus additional data collected since that time, and provides greater spatial and temporal definition of Oc. camptorhynchus numbers at seven sites across the Gippsland Lakes system of eastern Victoria. A total of 357 672 Oc. camptorhynchus was captured from 1188 trap-nights across the seven trap sites during trapping seasons from 1990 to 2001. The dominance of Oc. camptorhynchus across the seven sites averaged 75%, with significant differences in mean abundance of Oc. camptorhynchus found between all trap sites. Significant differences in monthly abundance of Oc. camptorhynchus were observed for Wellington Shire. Increase in populations of Oc. camptorhynchus was associated with increases in rainfall at all trap sites, higher minimum temperatures at two of the seven trap sites, and wind speed at one trap site. Prioritisation of mosquito control may be applied based on spatial and temporal factors according to the findings of this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The scale at which algal biodiversity is partitioned across the landscape, and the biophysical processes and biotic interactions which shape these communities in dryland river refugia was studied on two occasions from 30 sites in two Australian dryland rivers. Despite the waterholes studied having characteristically high levels of abiogenic turbidity, a total of 186 planktonic microalgae, 253 benthic diatom and 62 macroalgal species were recorded. The phytoplankton communities were dominated by flagellated cryptophytes, euglenophytes and chlorophytes, the diatom communities by cosmopolitan taxa known to tolerate wide environmental conditions, and the macroalgal communities by filamentous cyanobacteria. All algal communities showed significant differences between catchments and sampling times, with a suite of between 5 and 12 taxa responsible for similar to 50% of the observed change. In general, algal assemblage patterns were poorly correlated with the measured environmental variables. Phytoplankton and diatom assemblage patterns were weakly correlated with several waterhole geomorphic measures, whereas macroalgal assemblage patterns showed some association with variability in ionic concentration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A well-known property of orientation-tuned neurons in the visual cortex is that they are suppressed by the superposition of an orthogonal mask. This phenomenon has been explained in terms of physiological constraints (synaptic depression), engineering solutions for components with poor dynamic range (contrast normalization) and fundamental coding strategies for natural images (redundancy reduction). A common but often tacit assumption is that the suppressive process is equally potent at different spatial and temporal scales of analysis. To determine whether it is so, we measured psychophysical cross-orientation masking (XOM) functions for flickering horizontal Gabor stimuli over wide ranges of spatio-temporal frequency and contrast. We found that orthogonal masks raised contrast detection thresholds substantially at low spatial frequencies and high temporal frequencies (high speeds), and that small and unexpected levels of facilitation were evident elsewhere. The data were well fit by a functional model of contrast gain control, where (i) the weight of suppression increased with the ratio of temporal to spatial frequency and (ii) the weight of facilitatory modulation was the same for all conditions, but outcompeted by suppression at higher contrasts. These results (i) provide new constraints for models of primary visual cortex, (ii) associate XOM and facilitation with the transient magno- and sustained parvostreams, respectively, and (iii) reconcile earlier conflicting psychophysical reports on XOM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Separate physiological mechanisms which respond to spatial and temporal stimulation have been identified in the visual system. Some pathological conditions may selectively affect these mechanisms, offering a unique opportunity to investigate how psychophysical and electrophysiological tests reflect these visual processes, and thus enhance the use of the tests in clinical diagnosis. Amblyopia and optical blur were studied, representing spatial visual defects of neural and optical origin, respectively. Selective defects of the visual pathways were also studied - optic neuritis which affects the optic nerve, and dementia of the Alzheimer type in which the higher association areas are believed to be affected, but the primary projections spared. Seventy control subjects from 10 to 79 years of age were investigated. This provided material for an additional study of the effect of age on the psychophysical and electrophysiological responses. Spatial processing was measured by visual acuity, the contrast sensitivity function, or spatial modulation transfer function (MTF), and the pattern reversal and pattern onset-offset visual evoked potential (VEP). Temporal, or luminance, processing was measured by the de Lange curve, or temporal MTF, and the flash VEP. The pattern VEP was shown to reflect the integrity of the optic nerve, geniculo striate pathway and primary projections, and was related to high temporal frequency processing. The individual components of the flash VEP differed in their characteristics. The results suggested that the P2 component reflects the function of the higher association areas and is related to low temporal frequency processing, while the Pl component reflects the primary projection areas. The combination of a delayed flash P2 component and a normal latency pattern VEP appears to be specific to dementia of the Alzheimer type and represents an important diagnostic test for this condition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A rich material of Heteroptera extracted with Berlese funnels by Dr. I. Loksa between 1953–1974 in Hungary, has been examined. Altogether 157 true bug species have been identified. The ground-living heteropteran assemblages collected in different plant communities, substrata, phytogeographical provinces and seasons have been compared with multivariate methods. Because of the unequal number of samples, the objects have been standardized with stochastic simulation. There are several true bug species, which have been collected in almost all of the plant communities. However, characteristic ground-living heteropteran assemblages have been found in numerous Hungarian plant community types. Leaf litter and debris seem to have characteristic bug assemblages. Some differences have also been recognised between the bug fauna of mosses growing on different surfaces. Most of the species have been found in all of the great phytogeographical provinces of Hungary. Most high-dominance species, which have been collected, can be found at the ground-level almost throughout the year. Specimens of many other species have been collected with Berlese funnels in spring, autumn and/or winter. The diversities of the ground-living heteropteran assemblages of the examined objects have also been compared.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present here a 4-year dataset (2001–2004) on the spatial and temporal patterns of aboveground net primary production (ANPP) by dominant primary producers (sawgrass, periphyton, mangroves, and seagrasses) along two transects in the oligotrophic Florida Everglades coastal landscape. The 17 sites of the Florida Coastal Everglades Long Term Ecological Research (FCE LTER) program are located along fresh-estuarine gradients in Shark River Slough (SRS) and Taylor River/C-111/Florida Bay (TS/Ph) basins that drain the western and southern Everglades, respectively. Within the SRS basin, sawgrass and periphyton ANPP did not differ significantly among sites but mangrove ANPP was highest at the site nearest the Gulf of Mexico. In the southern Everglades transect, there was a productivity peak in sawgrass and periphyton at the upper estuarine ecotone within Taylor River but no trends were observed in the C-111 Basin for either primary producer. Over the 4 years, average sawgrass ANPP in both basins ranged from 255 to 606 g m−2 year−1. Average periphyton productivity at SRS and TS/Ph was 17–68 g C m−2 year−1 and 342–10371 g C m−2 year−1, respectively. Mangrove productivity ranged from 340 g m−2 year−1 at Taylor River to 2208 g m−2 year−1 at the lower estuarine Shark River site. Average Thalassia testudinum productivity ranged from 91 to 396 g m−2 year−1 and was 4-fold greater at the site nearest the Gulf of Mexico than in eastern Florida Bay. There were no differences in periphyton productivity at Florida Bay. Interannual comparisons revealed no significant differences within each primary producer at either SRS or TS/Ph with the exception of sawgrass at SRS and the C−111 Basin. Future research will address difficulties in assessing and comparing ANPP of different primary producers along gradients as well as the significance of belowground production to the total productivity of this ecosystem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spatial and temporal distributions of the epiphytic diatom flora on Thalassia testudinum was described within the Florida Bay estuary and at one Atlantic site east of the Florida Keys over a 1-year period. Species of the genus Mastogloia dominated the epiphytic diatom flora (82 out of 332 total species). Nonmetric Multidimensional Scaling (NMDS) and Analysis of Similarity (ANOSIM) revealed four distinct spatial assemblages and two temporal assemblages. Eastern and western Florida Bay assemblages were identified within the estuary. The eastern diatom assemblage was characterized by high relative abundances of Brachysira aponina and Nitzschia liebetruthii, while the western assemblage was characterized by the abundance of Reimerothrix floridensis, particularly during summer. Two diverse and distinct marine assemblages, one located in the Gulf of Mexico along the western edge of Florida Bay and the other behind the Florida reef tract in the Atlantic Ocean, were also identified. Analysis of the spatial distribution of diatoms and water quality characteristics within Florida Bay suggest that these assemblages may be structured by salinity and nutrient availability, particularly P. The Gulf of Mexico and the western Florida Bay assemblages were associated with higher water column salinities and TP concentrations and lower DIN concentrations and TN:TP ratios relative to the eastern Florida Bay assemblage. The temporal variation in diatom assemblages was associated with water temperature, though temporal indicator species were few relative to the number of spatial indicators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Geochemical mixing models were used to decipher the dominant source of freshwater (rainfall, canal discharge, or groundwater discharge) to Biscayne Bay, an estuary in south Florida. Discrete samples of precipitation, canal water, groundwater, and bay surface water were collected monthly for 2 years and analyzed for salinity, stable isotopes of oxygen and hydrogen, and Sr2+/Ca2+ concentrations. These geochemical tracers were used in three separate mixing models and then combined to trace the magnitude and timing of the freshwater inputs to the estuary. Fresh groundwater had an isotopic signature (δ 18O = −2.66‰, δD −7.60‰) similar to rainfall (δ 18O = −2.86‰, δD = −4.78‰). Canal water had a heavy isotopic signature (δ 18O = −0.46‰, δD  = −2.48‰) due to evaporation. This made it possible to use stable isotopes of oxygen and hydrogen to separate canal water from precipitation and groundwater as a source of freshwater into the bay. A second model using Sr2+/Ca2+ ratios was developed to discern fresh groundwater inputs from precipitation inputs. Groundwater had a Sr2+/Ca2+ ratio of 0.07, while precipitation had a dissimilar ratio of 0.89. When combined, these models showed a freshwater input ratio of canal/precipitation/groundwater of 37%:53%:10% in the wet season and 40%:55%:5% in the dry season with an error of ±25%. For a bay-wide water budget that includes saltwater and freshwater mixing, fresh groundwater accounts for 1–2% of the total fresh and saline water input.