1000 resultados para south Indian script


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Stable oxygen- and carbon-isotope ratios of Rhaetian (upper Triassic) limestone samples from the Wombat Plateau, northwest Australia, were measured to explore possible diagenetic pathways that the material underwent after deposition in a shallow-water environment, before plateau submergence in the Early Cretaceous. Host sediment isotopic values cluster near typical marine carbonate values (d18O ranging from -2.57 per mil to +1.78 per mil and d13C, from +2.45 per mil to +4.01 per mil). Isotopic values of equant clear calcite lining or filling rock pores also plot in the field of marine cements (d18O = +1.59 per mil to -2.24 per mil and d13C = +4.25 per mil to +2.57 per mil), while isotopic values for neomorphic calcites replacing skeletal (megalodontid shell) carbonate material show a wider scatter of oxygen and carbon values, d18O ranging from +2.73 per milo to -6.2 per mil and d13C, from +5.04 per mil to +1.22 per mil. Selective dissolution of metastable carbonate phases (aragonite?) and neomorphic replacement of skeletal material probably occurred in a meteoric phreatic environment, although replacement products (inclusion-rich microspar, clear neomorphic spar, etc.) retained the original marine isotopic signature because transformation probably occurred in a closed system dominated by the composition of the dissolving phases (high rock/water ratio). The precipitation of late-stage equant (low-Mg?) calcite cement in the pores occurred in the presence of normal marine waters, probably in a deep-water environment, after plateau drowning. Covariance of d18O and d13C toward negative values indeed suggests influence of meteorically modified fluids. However, none of the samples shows negative carbon values, excluding the persistence of organic-rich soils on subaerial karstic surfaces (Caribbean-style diagenesis). Petrographical and geochemical data are consistent with the sedimentological evidence of plateau drowning in post-Rhaetian times and with a submarine origin of the >70-m.y.-long Jurassic hiatus.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Concordant plateau and isochron ages are obtained from 40Ar-39Ar incremental heating experiments on volcanic rocks recovered by drilling at three Leg 121 sites along the Ninetyeast Ridge and two dredge locations on the southern scarp of the Broken Ridge, eastern Indian Ocean. The new data confirm a northerly increase in the age of volcanism along the Ninetyeast Ridge, from 38 to 82 Ma; this lineament links current hotspot volcanism near the Kerguelen islands with the Rajmahal flood basalt eruptions at M0 time (117 ± 1 Ma). The Broken Ridge was formed over the same hotspot at 88-89 Ma, but later experienced rift-related volcanism in Paleocene time (63 Ma). The geometry and distribution of ages along these prominent volcanic ridges and the Mascarene-Chagos-Laccadive-Maldive ridge system in the western Indian Ocean are most compatible with plate motions over fixed hotspots near Kerguelen and Reunion islands, respectively.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Basement lavas from Sites 756, 757, and 758 on Ninetyeast Ridge are tholeiitic basalts. Lavas from Sites 756 and 757 appear to be subaerial eruptives, but the lowermost flows from Hole 758A are pillow lavas. In contrast to the compositional variation during the waning stages of Hawaiian volcanism, no alkalic lavas have been recovered from Ninetyeast Ridge and highly evolved lavas were recovered from only one of seven drill sites (DSDP Site 214). All lavas from Site 758 have relatively high MgO contents (8-10 wt%), and they are less evolved than lavas from Sites 756 and 757. Although abundances of alkali metals in these Ninetyeast Ridge basalts were significantly modified by postmagmatic alteration, abundances of other elements reflect magmatic processes. At Site 757 most of the lavas are Plagioclase cumulates, but lava compositions require two compositionally distinct, AhCb-rich parental magmas, perhaps segregated at relatively low mantle pressures. In addition, at both Sites 756 and 758 more than one compositionally distinct parental magma is required. The compositions of these Ninetyeast Ridge lavas, especially those from Site 758, require a source component with a depleted composition; specifically, the abundance ratios Th/Ta, Th/La, Ba/Nb, Ba/La, and La/Ce in these lavas are generally less than the ratios inferred for primitive mantle. Lavas from Ninetyeast Ridge and the Kerguelen Archipelago have very different chondrite-normalized REE patterns, with lower light REE/heavy REE (LREE/HREE) ratios in lavas from Ninetyeast Ridge. However, lavas from Sites 757 and 758 have Pb isotope ratios that overlap with the field defined by lavas from the Kerguelen Archipelago (Weis and Frey, this volume). Therefore, these Ninetyeast Ridge lavas contain more of a component that is relatively depleted in LREE and other highly incompatible elements, but have similar amounts of the component that controls radiogenic Pb isotopes. A model involving mixing between components related to a depleted source and an enriched plume source has been proposed for the oldest Kerguelen Archipelago basalts and Ninetyeast Ridge lavas. Although the incompatible element characteristics of the Ninetyeast Ridge lavas are intermediate between depleted MORB and Kerguelen Archipelago basalts, these data are not consistent with a simple two-component mixing process. A more complex model is required.