931 resultados para small-angle X-ray scattering


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cellulose can be used as a renewable raw material for energy production. The utilization requires degradation of cellulose into glucose, which can be done with the aid of enzymatic hydrolysis. In this thesis, various x-ray methods were used to characterize sub-micrometer changes in microcrystalline cellulose during enzymatic hydrolysis to clarify the process and factors slowering it. The methods included wide-angle x-ray scattering (WAXS), small-angle x-ray scattering (SAXS) and x-ray microtomography. In addition, the samples were studied with transmission electron microscopy (TEM). The studied samples were hydrolyzed by enzymes of the Trichoderma reesei species for 6, 24, and 75 hours, which corresponded to 31 %, 58 %, and 68 % degrees of hydrolysis, respectively. Freeze-dried hydrolysis residues were measured with WAXS, SAXS and microtomography, whereas some of them were re-wetted for the wet SAXS and TEM measurements. The microtomography measurements showed a clear decrease in particle size in scale of tens of micrometers. In all the TEM pictures similar cylindrical and partly ramified structures were observed, independent of the hydrolysis time. The SAXS results were ambiguous and partly imprecise, but showed a change in the structure of wet samples in scale of 10-30 nm. According to the WAXS results, the degrees of crystallinity and the crystal sizes remained the same. The gained results support the assuption, that the cellulosic particles are hydrolyzed mostly on their surface, since the enzymes are unable to penetrate into the nanopores of wet cellulose. The hydrolysis therefore proceeds quickly in easily accessible particles and leaves the unaccesible particles almost untouched. The structural changes observed in the SAXS measurements might correspond to slight loosening of the microfibril aggregates, which was seen only in the wet samples because of their different pore structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(vinyl alcohol)-matrix reinforced with nanodiamond (ND) particles, with ND content up to 0.6 wt%, were synthesized. Characterization of the composites by transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS) reveal uniform distribution of the ND particles with no agglomeration in the matrix. Differential scanning calorimetry reveals that the crystallinity of the polymer increases with increasing ND content, indicating a strong interaction between ND and PVA. Nano-indentation technique was employed to assess the mechanical properties of composites. Results show that even small additions of ND lead to significant enhancement in the hardness and elastic modulus of PVA. Possible micromechanisms responsible for the enhancement of the mechanical properties are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the growth kinetics of CdS nanocrystals in the quantum confinement regime using time-resolved small-angle X-ray scattering. In contrast to earlier reports for similar systems, we establish that the growth kinetics in this case follows the Lifshitz-Slyozov-Wagner theory, for not only growth of the average diameter of the nanocrystals but also the time dependence of the size distribution and the temperature dependence of the rate constant. This is the first rigorous example of the coarsening process in the quantum confinement (< 5 nm)regime. Ab initio studies for the reaction pathways provide a microscopic understanding of this finding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymer nanocomposites containing different concentrations of Au nanoparticles have been investigated by small angle X-ray scattering and electronic absorption spectroscopy. The variation in the surface plasmon resonance (SPR) band of Au nanoparticles with concentration is described by a scaling law. The variation in the plasmon band of ReO3 nanoparticles embedded in polymers also follows a similar scaling law. Sistance dependence of plasmon coupling in polymer composites f metal nanoparticles. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Mycobacterium tuberculosis transcriptional regulator Rv1364c regulates the activity of the stress response sigma factor sigma(F). This multi-domain protein has several components: a signaling PAS domain and an effector segment comprising of a phosphatase, a kinase and an anti-anti-sigma factor domain. Based on Small Angle X-ray Scattering (SAXS) data, Rv1364c was recently shown to be a homo-dimer and adopt an elongated conformation in solution. The PAS domain could not be modeled into the structural envelope due to poor sequence similarity with known PAS proteins. The crystal structure of the PAS domain described here provides a structural basis for the dimerization of Rv1364c. It thus appears likely that the PAS domain regulates the anti-sigma activity of Rv1364c by oligomerization. A structural comparison with other characterized PAS domains reveal several sequence and conformational features that could facilitate ligand binding - a feature which suggests that the function of Rv1364c could potentially be governed by specific cellular signals or metabolic cues. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small angle X-ray scattering (SAXS) studies of poly2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) with varying conjugation, and polyethylene dioxythiophene complexed with polystyrene sulfonate (PEDOT-PSS) in different solvents have shown the importance of the role of pi-electron conjugation and solvent-chain interactions in controlling the chain conformation and assembly. In MEH-PPV, by increasing the extent of conjugation from 30 to 100%, the persistence length (l(p)) increases from 20 to 66 angstrom. Moreover, a pronounced second peak in the pair distribution function has been observed in the fully conjugated chain, at larger length scales. This feature indicates that the chain segments tend to self-assemble as the conjugation along the chain increases. In the case of PEDOT-PSS, the chains undergo solvent induced expansion and enhanced chain organization. The clusters formed by chains are better correlated in dimethyl sulfoxide (DMSO) solution than water, as observed in the scattered intensity profiles. The values of radius of gyration and the exponent (water: 2.6, DMSO: 2.31) of power-law decay, obtained from the unified scattering function (Beaucage) analysis, give evidence for chain expansion from compact (in water) to an extended coil in DMSO solutions, which is consistent with the Kratky plot analysis. The mechanism of this transition and the increase in dc conductivity of PEDOT-PSS in DMSO solution are discussed. The onset frequency for the increase in ac conduction, as well as its temperature dependence, probes the extent of the connectivity in the PEDOT-PSS system. The enhanced charge transport in PEDOT-PSS in DMSO is attributed to the extended chain conformation, as observed in the SAXS results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The strikingly different charge transport behaviours in nanocomposites of multiwall carbon nanotubes (MWNTs) and conducting polymer polyethylenedioxythiophene-polystyrene-sulfonic-acid (PEDOT-PSS) at low temperatures are explained by probing their conformational properties using small-angle x-ray scattering (SAXS). The SAXS studies indicate the assembly of elongated PEDOT-PSS globules on the walls of nanotubes, coating them partially, thereby limiting the interaction between the nanotubes in the polymer matrix. This results in a charge transport governed mainly by small polarons in the conducting polymer despite the presence of metallic MWNTs. At T > 4 K, hopping of the charge carriers following one-dimensional variable range hopping is evident which also gives rise to a positive magnetoresistance (MR) with an enhanced localization length (similar to 5 nm) due to the presence of MWNTs. However, at T < 4 K, the observation of an unconventional positive temperature coefficient of resistivity is attributed to small polaron tunnelling. The exceptionally large negative MR observed in this temperature regime is conjectured to be due to the presence of quasi-1D MWNTs that can aid in lowering the tunnelling barrier across the nanotube-polymer boundary resulting in large delocalization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecules exhibiting a thermotropic liquid-crystalline property have acquired significant importance due to their sensitivity to external stimuli such as temperature, mechanical forces, and electric and magnetic fields. As a result, several novel mesogens have been synthesized by the introduction of various functional groups in the vicinity of the aromatic core as well as in the side chains and their properties have been studied. In the present study, we report three-ring mesogens with hydroxyl groups at one terminal. These mesogens were synthesized by a multistep route, and structural characterization was accomplished by spectral techniques. The mesophase properties were studied by hot-stage optical polarizing microscopy, differential scanning calorimetry, and small-angle X-ray scattering. An enantiotropic nematic phase was noticed for lower homologues, while an additional smectic C phase was found for higher homologues. Solid-state high-resolution natural abundance (13)C NMR studies of a typical mesogen in the solid phase and in the mesophases have been carried out. The (13)C NMR spectrum of the mesogen in the smectic C and nematic phases indicated spontaneous alignment of the molecule in the magnetic field. By utilizing the two-dimensional separated local field (SLF) NMR experiment known as SAMPI4, (13)C-(1)H dipolar couplings have been obtained, which were utilized to determine the orientational order parameters of the mesogen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the synthesis of aligned arrays of millimeter long carbon nanotubes (CNTs), from benzene and ferrocene as the molecular precursor and catalyst respectively, by a one-step chemical vapor deposition technique. The length of the grown CNTs depends on the reaction temperature and increases from similar to 85 mu m to similar to 1.4 mm when the synthesis temperature is raised from 650 to 1100 degrees C, while the tube diameter is almost independent of the preparation temperature and is similar to 80 nm. The parallel arrangement of the CNTs, as well as their tube diameter can be verified spectroscopically by small angle X-ray scattering (SAXS) studies. Based on electron diffraction scattering (EDS) studies of the top and the base of the CNT films, a root growth process can be deduced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The near-critical behaviour in complex fluids, comprising electrolyte solutions, polymer solutions and amphiphilic systems, reveals a marked departure from the 3-D Ising behaviour. This departure manifests itself either in terms of a crossover from Ising to mean-field (or classical) critical behaviour, when moving away from a given critical point (Tc), or by the persistence of only mean-field region in the surprisingly close vicinity of Tc. The ilo,non-Ising features of the osmotic compressibility (chi(T,p)) in solutions of electrolytes, that exhibit orle or many liquid-liquid transitions, will be presented. The underlying cause of the breakdown of the anticipated 3-D Ising behaviour in aqueous electrolyte solutions is traced to the structuring induced by the electrolytes. New evidence constituting, measurements of small-angle X-ray scattering (SAXS) and the excess molar volume, is advanced to support the thesis of the close relationship, between the structuring and the deviation from the 3-D Ising critical behaviour in aqueous electrolyte solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lipoplexes formed by the pEGFP-C3 plasmid DNA (pDNA) and lipid mixtures containing cationic gemini surfactant of the 1,2-bis(hexadecyl dimethyl ammonium) Acmes family referred to as C16CnC16, where n = 2 3, 5, or 12, and the zwitterionic helper lipid, 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE) have been studied from a wide variety of physical, chemical, and biological standpoints. The study has been carried out using several experimental methods, such as zeta potential, gel electrophoresis, small-angle X-ray scattering (SAXS), cryo-TEM, gene transfection, cell viability/cytotoxicity, and confocal fluorescence microscopy. As reported recently in a communication (J. Am. Chem. Soc. 2011, 133, 18014), the detailed physicochemical and biological studies confirm that, in the presence of the studied series lipid mixtures, plasmid DNA is compacted with a large number of its associated Na+ counterions. This in turn yields a much lower effective negative charge, q(pDNA)(-), a value that has been experimentally obtained for each mixed lipid mixture. Consequently, the cationic lipid (CL) complexes prepared with pDNA and CL/DOPE mixtures to be used in gene transfection require significantly less amount of CL than the one estimated assuming a value of q(DNA)(-) = -2. This drives to a considerably lower cytotoxicity of the gene vector. Depending on the CL molar composition, alpha, of the lipid mixture, and the effective charge ratio of the lipoplex, rho(eff), the reported SAXS data indicate the presence of two or three structures in the same lipoplex, one in the DOPE-rich region, other in the CL-rich region, and another one present at any CL composition. Cryo-TEM and SAXS studies with C16CnC16/DOPE-pDNA lipoplexes indicate that pDNA is localized between the mixed lipid bilayers of lamellar structures within a monolayer of similar to 2 nm. This is consistent with a highly compacted supercoiled pDNA conformation compared with that of linear DNA. Transfection studies were carried out with HEK293T, HeLa, CHO, U343, and H460 cells. The alpha and rho(eff) values for each lipid mixture were optimized on HEK293T cells for transfection, and using these values, the remaining cells were also transfected in absence (-FBS-FBS) and presence (-FBS+FBS) of serum. The transfection efficiency was higher with the CLs of shorter gemini spacers (n = 2 or 3). Each formulation expressed GFP on pDNA transfection and confocal fluorescence microscopy corroborated the results. C16C2C16/DOPE mixtures were the most efficient toward transfection among all the lipid mixtures and, in presence of serum, even better than the Lipofectamine2000, a commercial transfecting agent Each lipid combination was safe and did not show any significant levels of toxicity. Probably, the presence of two coexisting lamellar structures in lipoplexes synergizes the transfection efficiency of the lipid mixtures which are plentiful in the lipoplexes formed by CLs with short spacer (n = 2, 3) than those with the long spacer (n = 5, 12).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A peripherally clickable hyperbranched polyester carrying numerous propargyl terminal groups was prepared by a simple melt transesterification polycondensation of a suitably designed AB(2) monomer; this clickable hyperscaffold was then transformed into a variety of different derivatives by using the Cu-catalyzed azide-yne click reaction. Functionalization of the periphery with equimolar quantities of mutually immiscible segments, such as hydrocarbon, fluorocarbon, and PEG, yielded frustrated molecular systems that readapt and form structures wherein the immiscible segments appear to self-segregate to generate either Janus structures (when two immiscible segments are present) or tripodal structures (when three immiscible segments are present). Evidence for such self-segregation was obtained from a variety of studies, such as differential scanning calorimetry, Langmuir isotherms, AFM imaging, and small-angle X-ray scattering measurements. Crystallization of one or more of the peripheral segments reinforced this self-segregation; the weight-fraction-normalized enthalpies of melting associated with the different domains revealed a competition between the segments to optimize their crystalline organization. When one or more of the segments are amorphous, the remaining segments crystallize more effectively and consequently exhibit a higher melting enthalpy. AFM images of monolayers, transferred from the Langmuir trough, revealed that the thickness matches the expected values; furthermore, contact angle measurements clearly demonstrated that the monolayer films are fairly hydrophobic, and in the case of the tripodal hybramers, the presence of domains of hydrocarbon and fluorocarbon appears to impart nanoscale chemical heterogeneity that is reflected in the strong hysteresis in the advancing and receding contact angles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The configuration of hemoglobin in solution and confined inside silica nanotubes has been studied using synchrotron small angle X-ray scattering and electrochemical activity. Confinement inside submicron tubes of silica aid in preventing protein aggregation, which is vividly observed for unconfined protein in solution. The radius of gyration (R-g) and size polydispersity (p) of confined hemoglobin was found to be lower than that in solution. This was also recently demonstrated in case of confined hemoglobin inside layered polymer capsules. The confined hemoglobin displayed a higher thermal stability with Rg and p showing negligible changes in the temperature range 25-75 degrees C. The differences in configuration between the confined and unconfined protein were reflected in their electrochemical activity. Reversible electrochemical response (from cyclic voltammograms) obtained in case of the confined hemoglobin, in contrary to the observance of only a cathodic response for the unconfined protein, gave direct indication of the differences between the residences of the electroactive heme center in a different orientation compared to that in solution state. The confined Hb showed loss of reversibility only at higher temperatures. The electron transfer coefficient (alpha) and electron transfer rate constant (k(s)) were also different, providing additional evidence regarding structural differences between the unconfined and confined states of hemoglobin. Thus, absence of any adverse effects due to confinement of proteins inside the inorganic matrices such as silica nanotubes opens up new prospects for utilizing inorganic matrices as protein ``encapsulators'', as well as sensors at varying temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The two-phase Brust-Schiffrin method (BSM) is used to synthesize highly stable nanoparticles of noble metals. A phase transfer catalyst (PTC) is used to bring in aqueous phase soluble precursors into the organic phase to enable particle synthesis there. Two different mechanisms for phase transfer are advanced in the literature. The first mechanism considers PTC to bring in an aqueous phase soluble precursor by complexing with it. The second mechanism considers the ionic species to be contained in inverse micelles of PTC, with a water core inside. A comprehensive experimental study involving measurement of interfacial tension, viscosity, water content by Karl-Fischer titration, static light scattering, H-1 NMR, and small-angle X-ray scattering is reported in this work to establish that the phase transfer catalyst tetraoctylammonium bromide transfers ions by complexing with them, instead of encapsulating them in inverse micelles. The findings have implications for particle synthesis in two-phase methods such as BSM and their modification to produce more monodispersed particles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural relaxations in PVDF rich blends with PMMA can be quite interesting in understanding the origin of the different molecular relaxations associated with the crystalline and amorphous phases, crystal-amorphous interphase and the segmental motions. In light of our recent findings, we understood that the origin of these molecular relaxations were strongly contingent on the concentration of PMMA in the blend, crystalline morphology and the surface functional moieties on multiwall carbon nanotubes (CNTs). In addition, for the blends with concentration of PMMA >= 25 wt%, the structural relaxations often merge and are dielectrically indistinguishable. In this study, we attempted to determine the critical width in composition where the structural relaxations can be distinctly realized both in the control as well as blends with amine functionalized CNTs (NH2-CNTs). Intriguingly, we observed that in a narrow zone in composition (with PMMA concentration >= 10 wt% and <= 25 wt%), the molecular relaxations can be dielectrically distinguished and they often merge for all other compositions. Furthermore, we attempted to understand how this critical width in composition is related to the crystalline morphology using small angle X-ray scattering and polarizing optical microscopy and the crystal structure using FTIR and Raman spectroscopy. We now understand that although the formation of beta crystals in the blends has no direct correlation with the observed molecular relaxations, the amorphous miscibility and the interphase regions seem to be dictating the origin of different molecular relaxations in the blends. The latter was observed to be strongly contingent on the concentration of PMMA in the blends.