871 resultados para sleep dependent motor skill learning


Relevância:

40.00% 40.00%

Publicador:

Resumo:

JNK1 is a MAP-kinase that has proven a significant player in the central nervous system. It regulates brain development and the maintenance of dendrites and axons. Several novel phosphorylation targets of JNK1 were identified in a screen performed in the Coffey lab. These proteins were mainly involved in the regulation of neuronal cytoskeleton, influencing the dynamics and stability of microtubules and actin. These structural proteins form the dynamic backbone for the elaborate architecture of the dendritic tree of a neuron. The initiation and branching of the dendrites requires a dynamic interplay between the cytoskeletal building blocks. Both microtubules and actin are decorated by associated proteins which regulate their dynamics. The dendrite-specific, high molecular weight microtubule associated protein 2 (MAP2) is an abundant protein in the brain, the binding of which stabilizes microtubules and influences their bundling. Its expression in non-neuronal cells induces the formation of neurite-like processes from the cell body, and its function is highly regulated by phosphorylation. JNK1 was shown to phosphorylate the proline-rich domain of MAP2 in vivo in a previous study performed in the group. Here we verify three threonine residues (T1619, T1622 and T1625) as JNK1 targets, the phosphorylation of which increases the binding of MAP2 to microtubules. This binding stabilizes the microtubules and increases process formation in non-neuronal cells. Phosphorylation-site mutants were engineered in the lab. The non-phosphorylatable mutant of MAP2 (MAP2- T1619A, T1622A, T1625A) in these residues fails to bind microtubules, while the pseudo-phosphorylated form, MAP2- T1619D, T1622D, Thr1625D, efficiently binds and induces process formation even without the presence of active JNK1. Ectopic expression of the MAP2- T1619D, T1622D, Thr1625D in vivo in mouse brain led to a striking increase in the branching of cortical layer 2/3 (L2/3) pyramidal neurons, compared to MAP2-WT. The dendritic complexity defines the receptive field of a neuron and dictates the output to the postsynaptic cells. Previous studies in the group indicated altered dendrite architecture of the pyramidal neurons in the Jnk1-/- mouse motor cortex. Here, we used Lucifer Yellow loading and Sholl analysis of neurons in order to study the dendritic branching in more detail. We report a striking, opposing effect in the absence of Jnk1 in the cortical layers 2/3 and 5 of the primary motor cortex. The basal dendrites of pyramidal neurons close to the pial surface at L2/3 show a reduced complexity. In contrast, the L5 neurons, which receive massive input from the L2/3 neurons, show greatly increased branching. Another novel substrate identified for JNK1 was MARCKSL1, a protein that regulates actin dynamics. It is highly expressed in neurons, but also in various cancer tissues. Three phosphorylation target residues for JNK1 were identified, and it was demonstrated that their phosphorylation reduces actin turnover and retards migration of these cells. Actin is the main cytoskeletal component in dendritic spines, the site of most excitatory synapses in pyramidal neurons. The density and gross morphology of the Lucifer Yellow filled dendrites were characterized and we show reduced density and altered morphology of spines in the motor cortex and in the hippocampal area CA3. The dynamic dendritic spines are widely considered to function as the cellular correlate during learning. We used a Morris water maze to test spatial memory. Here, the wild-type mice outperformed the knock-out mice during the acquisition phase of the experiment indicating impaired special memory. The L5 pyramidal neurons of the motor cortex project to the spinal cord and regulate the movement of distinct muscle groups. Thus the altered dendrite morphology in the motor cortex was expected to have an effect on the input-output balance in the signaling from the cortex to the lower motor circuits. A battery of behavioral tests were conducted for the wild-type and Jnk1-/- mice, and the knock-outs performed poorly compared to wild-type mice in tests assessing balance and fine motor movements. This study expands our knowledge of JNK1 as an important regulator of the dendritic fields of neurons and their manifestations in behavior.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Self-controlled KR practice has revealed that providing participants the opportunity to control their KR is superior for motor learning compared to participants replicating the KR schedule of a self-control participant, without the choice (e.g., yoked). The purpose of the present experiment was two-fold. First, to examine the utility of a self-controlled KR schedule for learning a spatial motor task in younger and older adults and second, to determine whether a self-controlled KR schedule facilitates an increased ability to estimate one’s performance in retention and transfer. Twenty younger adults and 20 older adults practiced in either the self-control or yoked condition and were required to push and release a slide along a confined pathway using their non-dominant hand to a target distance. The retention data revealed that as a function of age, a self-controlled KR schedule facilitated superior retention performance and performance estimations in younger adults compared to their yoked counterparts.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The use of biofeedback in the spinal cord injuryperson rehabilitation has been increasing eventhough there are no data about the effi cacy of suchtechnique. The study aimed to evaluate the effi cacyof the technique in the motor rehabilitation ofspinal cord injured patients with different lesions.Using case studies, three participants, two paraplegicsand one quadriplegic, with different lesionlevels and degrees of defi ciency were exposed toelectromyography biofeedback training sessions.Data were obtained from the training sessions withbiofeedback, from three manual test examinationsof the muscles straight and from the reports of theparticipants after the training process. These sourcesof data were compared and the results of all thethree different sources showed improvement forall the participants. The study concluded that theelectromyography biofeedback technique can bean important tool in the rehabilitation process ofpatients with this kind of lesion.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background Long-term changes in synaptic plasticity require gene transcription, indicating that signals generated at the synapse must be transported to the nucleus. Synaptic activation of hippocampal neurons is known to trigger retrograde transport of transcription factor NF-κB. Transcription factors of the NF-κB family are widely expressed in the nervous system and regulate expression of several genes involved in neuroplasticity, cell survival, learning and memory. Principal Findings In this study, we examine the role of the dynein/dynactin motor complex in the cellular mechanism targeting and transporting activated NF-κB to the nucleus in response to synaptic stimulation. We demonstrate that overexpression of dynamitin, which is known to dissociate dynein from microtubules, and treatment with microtubule-disrupting drugs inhibits nuclear accumulation of NF-κB p65 and reduces NF-κB-dependent transcription activity. In this line, we show that p65 is associated with components of the dynein/dynactin complex in vivo and in vitro and that the nuclear localization sequence (NLS) within NF-κB p65 is essential for this binding. Conclusion This study shows the molecular mechanism for the retrograde transport of activated NF-κB from distant synaptic sites towards the nucleus.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cortical motor simulation supports the understanding of others' actions and intentions. This mechanism is thought to rely on the mirror neuron system (MNS), a brain network that is active both during action execution and observation. Indirect evidence suggests that alpha/beta suppression, an electroencephalographic (EEG) index of MNS activity, is modulated by reward. In this study we aimed to test the plasticity of the MNS by directly investigating the link between alpha/beta suppression and reward. 40 individuals from a general population sample took part in an evaluative conditioning experiment, where different neutral faces were associated with high or low reward values. In the test phase, EEG was recorded while participants viewed videoclips of happy expressions made by the conditioned faces. Alpha/beta suppression (identified using event-related desynchronisation of specific independent components) in response to rewarding faces was found to be greater than for non-rewarding faces. This result provides a mechanistic insight into the plasticity of the MNS and, more generally, into the role of reward in modulating physiological responses linked to empathy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective: To investigate whether spirography-based objective measures are able to effectively characterize the severity of unwanted symptom states (Off and dyskinesia) and discriminate them from motor state of healthy elderly subjects. Background: Sixty-five patients with advanced Parkinson’s disease (PD) and 10 healthy elderly (HE) subjects performed repeated assessments of spirography, using a touch screen telemetry device in their home environments. On inclusion, the patients were either treated with levodopa-carbidopa intestinal gel or were candidates for switching to this treatment. On each test occasion, the subjects were asked trace a pre-drawn Archimedes spiral shown on the screen, using an ergonomic pen stylus. The test was repeated three times and was performed using dominant hand. A clinician used a web interface which animated the spiral drawings, allowing him to observe different kinematic features, like accelerations and spatial changes, during the drawing process and to rate different motor impairments. Initially, the motor impairments of drawing speed, irregularity and hesitation were rated on a 0 (normal) to 4 (extremely severe) scales followed by marking the momentary motor state of the patient into 2 categories that is Off and Dyskinesia. A sample of spirals drawn by HE subjects was randomly selected and used in subsequent analysis. Methods: The raw spiral data, consisting of stylus position and timestamp, were processed using time series analysis techniques like discrete wavelet transform, approximate entropy and dynamic time warping in order to extract 13 quantitative measures for representing meaningful motor impairment information. A principal component analysis (PCA) was used to reduce the dimensions of the quantitative measures into 4 principal components (PC). In order to classify the motor states into 3 categories that is Off, HE and dyskinesia, a logistic regression model was used as a classifier to map the 4 PCs to the corresponding clinically assigned motor state categories. A stratified 10-fold cross-validation (also known as rotation estimation) was applied to assess the generalization ability of the logistic regression classifier to future independent data sets. To investigate mean differences of the 4 PCs across the three categories, a one-way ANOVA test followed by Tukey multiple comparisons was used. Results: The agreements between computed and clinician ratings were very good with a weighted area under the receiver operating characteristic curve (AUC) coefficient of 0.91. The mean PC scores were different across the three motor state categories, only at different levels. The first 2 PCs were good at discriminating between the motor states whereas the PC3 was good at discriminating between HE subjects and PD patients. The mean scores of PC4 showed a trend across the three states but without significant differences. The Spearman’s rank correlations between the first 2 PCs and clinically assessed motor impairments were as follows: drawing speed (PC1, 0.34; PC2, 0.83), irregularity (PC1, 0.17; PC2, 0.17), and hesitation (PC1, 0.27; PC2, 0.77). Conclusions: These findings suggest that spirography-based objective measures are valid measures of spatial- and time-dependent deficits and can be used to distinguish drug-related motor dysfunctions between Off and dyskinesia in PD. These measures can be potentially useful during clinical evaluation of individualized drug-related complications such as over- and under-medications thus maximizing the amount of time the patients spend in the On state.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Parkinson’s disease (PD) is an increasing neurological disorder in an aging society. The motor and non-motor symptoms of PD advance with the disease progression and occur in varying frequency and duration. In order to affirm the full extent of a patient’s condition, repeated assessments are necessary to adjust medical prescription. In clinical studies, symptoms are assessed using the unified Parkinson’s disease rating scale (UPDRS). On one hand, the subjective rating using UPDRS relies on clinical expertise. On the other hand, it requires the physical presence of patients in clinics which implies high logistical costs. Another limitation of clinical assessment is that the observation in hospital may not accurately represent a patient’s situation at home. For such reasons, the practical frequency of tracking PD symptoms may under-represent the true time scale of PD fluctuations and may result in an overall inaccurate assessment. Current technologies for at-home PD treatment are based on data-driven approaches for which the interpretation and reproduction of results are problematic.  The overall objective of this thesis is to develop and evaluate unobtrusive computer methods for enabling remote monitoring of patients with PD. It investigates first-principle data-driven model based novel signal and image processing techniques for extraction of clinically useful information from audio recordings of speech (in texts read aloud) and video recordings of gait and finger-tapping motor examinations. The aim is to map between PD symptoms severities estimated using novel computer methods and the clinical ratings based on UPDRS part-III (motor examination). A web-based test battery system consisting of self-assessment of symptoms and motor function tests was previously constructed for a touch screen mobile device. A comprehensive speech framework has been developed for this device to analyze text-dependent running speech by: (1) extracting novel signal features that are able to represent PD deficits in each individual component of the speech system, (2) mapping between clinical ratings and feature estimates of speech symptom severity, and (3) classifying between UPDRS part-III severity levels using speech features and statistical machine learning tools. A novel speech processing method called cepstral separation difference showed stronger ability to classify between speech symptom severities as compared to existing features of PD speech. In the case of finger tapping, the recorded videos of rapid finger tapping examination were processed using a novel computer-vision (CV) algorithm that extracts symptom information from video-based tapping signals using motion analysis of the index-finger which incorporates a face detection module for signal calibration. This algorithm was able to discriminate between UPDRS part III severity levels of finger tapping with high classification rates. Further analysis was performed on novel CV based gait features constructed using a standard human model to discriminate between a healthy gait and a Parkinsonian gait. The findings of this study suggest that the symptom severity levels in PD can be discriminated with high accuracies by involving a combination of first-principle (features) and data-driven (classification) approaches. The processing of audio and video recordings on one hand allows remote monitoring of speech, gait and finger-tapping examinations by the clinical staff. On the other hand, the first-principles approach eases the understanding of symptom estimates for clinicians. We have demonstrated that the selected features of speech, gait and finger tapping were able to discriminate between symptom severity levels, as well as, between healthy controls and PD patients with high classification rates. The findings support suitability of these methods to be used as decision support tools in the context of PD assessment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study sought to evaluate motor development in children aged 6 to 11 years with learning difficulties and school characteristics of delayed motor development, before and after application of a motor intervention program. The sample consisted of 28 children with a mean age of 107.21 ± 16.56 months, who were evaluated by the Motor Development Scale and received motor intervention for 6 months, followed by reassessment. We observed a statistically significant difference between the average of the motor activity ratios in all areas of the evaluation and reevaluation. Also verified in the evaluation were the concentration ratios of children with motor activity greater than or equal to 80 and there was a revaluation increase in this concentration on re-evaluation, the areas with the greatest increase in concentration and significant differences being: Body Schema, Space and temporal Organization. In the overall evaluation of MDS, most children presented the classification of low normal. However, in the reassessment most have evolved into the average normal, only 4 of themremaining in the same classification. Therefore, in this study, children with learning disabilities also showed motor deficits and the intervention applied contributed to an increase in the motor ratios with consequent improvement in motor development. Besides psychopedagogical asistance, it is essential to reassess them and if necessary apply the intervention in the motor development of children with learning difficulties.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

STUDY OBJECTIVE: Cyclic Alternating Pattern (CAP) is a fluctuation of the arousal level during NREM sleep and consists of the alternation between two phases: phase A (divided into three subtypes A1, A2, and A3) and phase B. A1 is thought to be generated by the frontal cortex and is characterized by the presence of K complexes or delta bursts; additionally, CAP A1 seems to have a role in the involvement of sleep slow wave activity in cognitive processing. Our hypothesis was that an overall CAP rate would have a negative influence on cognitive performance due to excessive fluctuation of the arousal level during NREM sleep. However, we also predicted that CAP A1 would be positively correlated with cognitive functions, especially those related to frontal lobe functioning. For this reason, the objective of our study was to correlate objective sleep parameters with cognitive behavioral measures in normal healthy adults. METHODS: 8 subjects (4 males; 4 females; mean age 27.75 years, range 2334) were recruited for this study. Two nocturnal polysomnography (night 2 and 3 = N2 and N3) were carried out after a night of adaptation. A series of neuropsychological tests were performed by the subjects in the morning and afternoon of the second day (D2am; D2pm) and in the morning of the third day (D3am). Raw scores from the neuropsychological tests were used as dependent variables in the statistical analysis of the results. RESULTS: We computed a series of partial correlations between sleep microstructure parameters (CAP, A1, A2 and A3 rate) and a number of indices of cognitive functioning. CAP rate was positively correlated with visuospatial working memory (Corsi block test), Trial Making Test Part A (planning and motor sequencing) and the retention of words from the Hopkins Verbal Learning Test (HVLT). Conversely, CAP was negatively correlated with visuospatial fluency (Ruff Figure Fluency Test). CAP A1 were correlated with many of the tests of neuropsychological functioning, such as verbal fluency (as measured by the COWAT), working memory (as measured by the Digit Span – Backward test), and both delay recall and retention of the words from the HVLT. The same parameters were found to be negatively correlated with CAP A2 subtypes. CAP 3 were negatively correlated with the Trial Making Test Parts A and B. DISCUSSION: To our knowledge this is the first study indicating a role of CAP A1 and A2 on behavioral cognitive performance of healthy adults. The results suggest that high rate of CAP A1 might be related to an improvement whereas high rate of CAP A2 to a decline of cognitive functions. Further studies need to be done to better determine the role of the overall CAP rate and CAP A3 on cognitive behavioral performances.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Spinal cord injury (SCI) results not only in paralysis; but it is also associated with a range of autonomic dysregulation that can interfere with cardiovascular, bladder, bowel, temperature, and sexual function. The entity of the autonomic dysfunction is related to the level and severity of injury to descending autonomic (sympathetic) pathways. For many years there was limited awareness of these issues and the attention given to them by the scientific and medical community was scarce. Yet, even if a new system to document the impact of SCI on autonomic function has recently been proposed, the current standard of assessment of SCI (American Spinal Injury Association (ASIA) examination) evaluates motor and sensory pathways, but not severity of injury to autonomic pathways. Beside the severe impact on quality of life, autonomic dysfunction in persons with SCI is associated with increased risk of cardiovascular disease and mortality. Therefore, obtaining information regarding autonomic function in persons with SCI is pivotal and clinical examinations and laboratory evaluations to detect the presence of autonomic dysfunction and quantitate its severity are mandatory. Furthermore, previous studies demonstrated that there is an intimate relationship between the autonomic nervous system and sleep from anatomical, physiological, and neurochemical points of view. Although, even if previous epidemiological studies demonstrated that sleep problems are common in spinal cord injury (SCI), so far only limited polysomnographic (PSG) data are available. Finally, until now, circadian and state dependent autonomic regulation of blood pressure (BP), heart rate (HR) and body core temperature (BcT) were never assessed in SCI patients. Aim of the current study was to establish the association between the autonomic control of the cardiovascular function and thermoregulation, sleep parameters and increased cardiovascular risk in SCI patients.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this thesis was to investigate the respective contribution of prior information and sensorimotor constraints to action understanding, and to estimate their consequences on the evolution of human social learning. Even though a huge amount of literature is dedicated to the study of action understanding and its role in social learning, these issues are still largely debated. Here, I critically describe two main perspectives. The first perspective interprets faithful social learning as an outcome of a fine-grained representation of others’ actions and intentions that requires sophisticated socio-cognitive skills. In contrast, the second perspective highlights the role of simpler decision heuristics, the recruitment of which is determined by individual and ecological constraints. The present thesis aims to show, through four experimental works, that these two contributions are not mutually exclusive. A first study investigates the role of the inferior frontal cortex (IFC), the anterior intraparietal area (AIP) and the primary somatosensory cortex (S1) in the recognition of other people’s actions, using a transcranial magnetic stimulation adaptation paradigm (TMSA). The second work studies whether, and how, higher-order and lower-order prior information (acquired from the probabilistic sampling of past events vs. derived from an estimation of biomechanical constraints of observed actions) interacts during the prediction of other people’s intentions. Using a single-pulse TMS procedure, the third study investigates whether the interaction between these two classes of priors modulates the motor system activity. The fourth study tests the extent to which behavioral and ecological constraints influence the emergence of faithful social learning strategies at a population level. The collected data contribute to elucidate how higher-order and lower-order prior expectations interact during action prediction, and clarify the neural mechanisms underlying such interaction. Finally, these works provide/open promising perspectives for a better understanding of social learning, with possible extensions to animal models.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Obesity often predisposes to coronary heart disease, heart failure, and sudden death. Also, several studies suggest a reciprocal enhancing interaction between obesity and sleep curtailment. Aim of the present study was to go deeper in the understanding of sleep and cardiovascular regulation in an animal model of diet-induced obesity (DIO). According to this, Wake-Sleep (W-S) regulation, and W-S dependent regulation of cardiovascular and metabolic/thermoregulatory function was studied in DIO rats, under normal laboratory conditions and during sleep deprivation and the following recovery period, enhancing either wake or sleep, respectively. After 8 weeks of the delivery of a hypercaloric (HC) diet, treated animals were heavier than those fed a normocaloric (NC) diet (NC: 441 ±17g; HC: 557±17g). HC rats slept more than NC ones during the activity period (Dark) of the normal 12h:12h light-dark (LD) cycle (Wake: 67.3±1.2% and 57.2 ±1.6%; NREM sleep (NREMS): 26.8±1.0% and 34.0±1.4%; REM sleep (REMS): 5.7±0. 6% and 8.6±0.7%; for NC and HC, respectively; p<0.05 for all). HC rats were hypertensive throughout the W-S states, as shown by the mean arterial blood pressure values across the 24-h period (Wake: 90.0±5.3 and 97.3±1.3; NREMS: 85.1±5.5 and 92.2±1.2; REMS: 87.2±4.5 and 96.5±1.1, mmHg for NC and HC, respectively; p<0.05 for all). Also, HC rats appeared to be slightly bradycardic compared to NC ones (Wake: 359.8±9.3 and 352.4±7.7; NREMS: 332.5±10.1 and 328.9±5.4; REMS: 338.5±9.3 and 334.4±5.8; bpm for NC and HC, respectively; p<0.05 for Wake). In HC animals, sleep regulation was not apparently altered during the sleep rebound observed in the recovery period following sleep deprivation, although REMS rebound appeared to be quicker in NC animals. In conclusion, these results indicate that in the rat obesity interfere with W-S and cardiovascular regulation and that DIO rats are suitable for further studies aimed at a better understanding of obesity comorbidities.