887 resultados para sintered stainless steel fiber felt
Resumo:
This paper presents the results from an experimental program and an analytical assessment of the influence of addition of fibers on mechanical properties of concrete. Models derived based on the regression analysis of 60 test data for various mechanical properties of steel fiber-reinforced concrete have been presented. The various strength properties studied are cube and cylinder compressive strength, split tensile strength, modulus of rupture and postcracking performance, modulus of elasticity, Poisson’s ratio, and strain corresponding to peak compressive stress. The variables considered are grade of concrete, namely, normal strength 35 MPa , moderately high strength 65 MPa , and high-strength concrete 85 MPa , and the volume fraction of the fiber Vf =0.0, 0.5, 1.0, and 1.5% . The strength of steel fiber-reinforced concrete predicted using the proposed models have been compared with the test data from the present study and with various other test data reported in the literature. The proposed model predicted the test data quite accurately. The study indicates that the fiber matrix interaction contributes significantly to enhancement of mechanical properties caused by the introduction of fibers, which is at variance with both existing models and formulations based on the law of mixtures
Resumo:
Die vorliegende Arbeit beschäftigt sich mit der Computersimulation des Rissinitiierungsprozesses für einen martensitischen Stahl, der der niederzyklischen Ermüdung unterworfen wurde. Wie auf der Probenoberfläche beobachtet wurde, sind die Initiierung und das frühe Wachstum dieser Mikrorisse in hohem Grade von der Mikrostruktur abhängig. Diese Tatsache wurde in mesoskopischen Schädigungsmodellen beschrieben, wobei die Körner als einzelne Kristalle mit anisotropem Materialverhalten modelliert wurden. Das repräsentative Volumenelement (RVE), das durch einen Voronoi-Zerlegung erzeugt wurde, wurde benutzt, um die Mikrostruktur des polykristallinen Materials zu simulieren. Spannungsverteilungen wurden mit Hilfe der Finiten-Elemente-Methode mit elastischen und elastoplastischen Materialeigenschaften analysiert. Dazu wurde die Simulation zunächst an zweidimensionalen Modellen durchgeführt. Ferner wurde ein vereinfachtes dreidimensionales RVE hinsichtlich des sowohl dreidimensionalen Gleitsystems als auch Spannungszustandes verwendet. Die kontinuierliche Rissinitiierung wurde simuliert, indem der Risspfad innerhalb jedes Kornes definiert wurde. Die Zyklenanzahl bis zur Rissinitiierung wurde auf Grundlage der Tanaka-Mura- und Chan-Gleichungen ermittelt. Die Simulation lässt auf die Flächendichten der einsegmentige Risse in Relation zur Zyklenanzahl schließen. Die Resultate wurden mit experimentellen Daten verglichen. Für alle Belastungsdehnungen sind die Simulationsergebnisse mit denen der experimentellen Daten vergleichbar.
Resumo:
Nickel, a component of stainless steels (SS) applied in orthopedic implants may cause allergic processes in human tissues P558 nickel free SS was studied to verify its viability as a substitute for stainless steel containing nickel Its performance is compared to ISO 5832-9 and F138 most used nowadays grades in implants fabrications, in minimum essential medium. MEM, at 37 degrees C. Potentiodynamic polarization curves, electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and ""in vitro"" cytotoxicity were used as techniques. From the electrochemical point of view P558 SS is comparable to ISO 5832-9 SS in MEM It remains passivated until the transpassivation potential, above which generalized corrosion occurs F138 presents pitting corrosion at 370 mV/SCE. The cytotoxicity results showed that P558. ISO 5832-9 and F138 do not present cytotoxic character Therefore, these results suggest that P558 SS can be applied in orthopedic implants (C) 2010 Elsevier BV All rights reserved
Resumo:
The electrochemical behavior of ISO 5832-9 stainless steel at 37 degrees C in 0.9% NaCl, Ringer Lactate and minimum essential medium (MEM) has been studied, using linear voltammetry, and surface analysis by SEM and EDS. Mechanical and toxicity tests were made. ISO 5832-9 is passivated at corrosion potential (E) and it does not present pitting corrosion on the media studied from to 50 in V above the transpassivation potential (Ei). SEM and EDS analysis have shown that the sample previously immersed in MEM presents a diffirent behavior at 50 in V above El: the manganese oxide inclusions are absent in the surface. E. values and passivation current density values j(pass) changed according to the following. E(corr, RL) < E(corr,NaCl) < E(corr, MEM) and J (MEM) << j(RL) congruent to j(NaCl) The stainless steel was characterized as non toxic in the cytotoxicity assay
Resumo:
The influence of bovine serum albumin (BSA) on the anodic dissolution of chromium present in UNS S31254 stainless steel (SS) in 0.15 mol L-1 NaCl at 37.0 +/- 0.5 degrees C has been studied, using anodic potentiostatic polarization curves and optical emission spectroscopy. Electrochemical results have shown that BSA has little effect on the transpassivation potential (E-T) and on the passivation current density values. However on the passivation range, BSA diminishes the intensity of the anodic wave seen at about E=750mV versus SCE attributed to Cr(III)/Cr(VI) oxidation. Optical emission spectroscopy results have shown that BSA prevents the anodic dissolution of chromium to occur and minimizes iron dissolution above the transpassivation potential (E=1160 mV versus SCE). (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Corrosion is an undesirable process that occurs in metallic materials. Studied was the effect of inhibiting Benzotriazole (BTAH), Benzimidazole (BZM) and Indole in different concentrations-for the stainless steel (SS) AISI 430 in H(2)SO(4) mol The techniques employed this research were: anodic potenciostatic polarisation, electrochemical impedance spectroscopy, optical microscopy and scanning electron microscopy The curves of anodic polarisation showed that BTAH, BZM and Indol act as corrosion inhibitors for 430 SS, at concentrations of 1x10(-3) and 5x10(-4) mol L(-1) but do not inhibit corrosion for concentrations equal to or less than 1x10(-4) mol L(-1). The in-crease of the efficiency in relation to the inhibitory substances studied followed this order: Indol
Resumo:
Fuel distribution uses 304 stainless steel containers for the storage of biofuels, however there are few reports in the literature about the corrosive aspects this. steel in biodiesel. The objective of this research is to study the corrosive behavior of 304 austenitic stainless steel in the presence of biodiesel, unwashed and washed, with aqueous solutions of citric, oxalic, acetic and ascorbic acids 0,01 mol L(-1), and compare with results obtained for the copper (ASTM D130). The employedtechniques were: atomic absorption spectrometry (AAS) and optical microscopy (OM). The results of EA A showed a low rate of corrosion for the stainless steel, the alloys elements studied were Cr, Ni and Fe, the highest rate was observed for the chrome, 1.78 ppm / day in biodiesel with or without washing. The OM of the 304 steel, when compared with that of copper has a low corrosion rate in the 304 steel/biodiesel system. Not with standing, this demonstrates that not only the 304 steel, but also the copper corrodes in biodiesel
Resumo:
Amino acids and self assembled monolayers (SAM`s) have been studied as to their inhibiting action on the corrosion of metallic materials. The objective of work is to study the electrochemical behavior of the cisteincisteine, the diphosfonate and the mixture of both in inhibiting the action of corrosion on stainless steel 304 in HCl 1 molL(-1). As the following techniques were used: open circuit potential (OCP), potenciostatic anodic polarization (A P), chronoamperomeny (CA), electrochemical impedance spectroscopy (EIS) and optical microscopy (OM). The results of CA showed that cisteine has a double effect, catalytic and inhibiting, in function of the immersion time of the metallic part in the electrolytic solution. AP curves have shown lesser current density for the system containing cisteine diphosfonate suggesting an inhibiting synergic action. These results have been confirmed by EIS and OM.
Resumo:
Setup time reduction facilitate the flexibility needed for just-in-time production. An integrated steel mill with meltshop, continuous caster and hot rolling mill is often operated as decoupled processes. Setup time reduction provides the flexibility needed to reduce buffering, shorten lead times and create an integrated process flow. The interdependency of setup times, process flexibility and integration were analysed through system dynamics simulation. The results showed significant reductions of energy consumption and tied capital. It was concluded that setup time reduction in the hot strip mill can aid process integration and hence improve production economy while reducing environmental impact.
Resumo:
Stainless steels are well known to be prone to cold welding and material transfer in sliding contacts and therefore difficult to cold form unless certain precautions as discussed in this paper are taken. In the present study different combinations of tool steels/stainless steels/lubricants has been evaluated with respect to their galling resistance using pin-on-disc testing. The results show that a high galling resistance is favored by a high stainless steel sheet hardness and a blasted stainless steel sheet surface topography. The effect of type of lubricant was found to be more complex. For example, the chlorinated lubricants failed to prevent metal-to-metal contact on a brushed sheet surface but succeeded on a blasted sheet surface of the same stainless steel material. This is believed to be due to a protective tribofilm which is able to form on the blasted surface, but not on the brushed surface.
Resumo:
The importance of investigating cost reduction in materials and components for solar thermal systems is crucial at the present time. This work focuses on the influence of two different heat exchangers on the performance of a solar thermal system. Both heat exchangers studied are immersed helically coiled, one made with corrugated stainless steel tube, and the other made with finned copper tube with smooth inner surface.A test apparatus has been designed and a simple test procedure applied in order to study heat transfer characteristics and pressure drop of both coils. Thereafter, the resulting experimental data was used to perform a parameter identification of the heat exchangers, in order to obtain a TRNSYS model with its corresponding numerical expression. Also a representative small-scale combisystem model was designed in TRNSYS, in order to study the influence of both heat exchangers on the solar fraction of the system, when working at different flow rates.It has been found that the highest solar fraction is given by the corrugated stainless steel coil, when it works at the lowest flow rate (100 l/hr). For any higher flow rate, the studied copper coil presents a higher solar fraction. The advantageous low flow performance of stainless steel heat exchanger turns out to be beneficial for the particular case of solar thermal systems, where it is well known that low flow collector loops lead to enhanced store stratification, and consequently higher solar fractions.Finally, an optimization of the stainless steel heat exchanger length is carried out, according to economic figures. For the given combisystem model and boundary conditions, the optimum length value is found between 10 and 12 m.
Resumo:
R.R.M. de Sousa et al. Nitriding in cathodic cage of stainless steel AISI 316: Influence of sample position. Vacuum, [s.l.], n.83, 2009. Disponivel em:
Resumo:
The purpose of this study was to investigate and compare the efficacy of various disinfectants on planktonic cells and biofilm cells of Listeria monocytogenes, Staphylococcus aureus and Escherichia coli. Numbers of viable biofilm cells decreased after treatment with all tested disinfectants (iodine, biguanide, quaternary ammonium compounds, peracetic acid and sodium hypochlorite). Sodium hypochlorite was the most effective disinfectant against biofilm cells, while biguanide was the least effective. Scanning electron microscopy observations revealed that cells adhered on stainless steel surface after treatment with the disinfectants. No viable planktonic cells were observed after treatment with the same disinfectants. Based on our findings, we concluded that biofilm cells might be more resistant to disinfectants than plancktonic cells.
Resumo:
Stainless steels are used to intake and exhaust valves production applied as internal combustion engines. In general valves are requested to support cyclic stresses applied due to opening and closing processes during the operation. The objective of this research is to study the influence on the axial fatigue strength of the resulting microstructure after heat treatment at the martensitic X45CrSi93 steel, combined with different surface treatments as hard chrome-plating, nitride and grinding. It was verified a significant increase on the fatigue strength of the martensitic steel after nitriding, compared with results from the chrome-plating specimens. A slight increase in the tensile strength was also noticed on nitrided parts as a consequence of a resistance increase due to nitrogen and carbon solid solution. (C) 2011 Published by Elsevier Ltd. Selection and peer-review under responsibility of ICM11