999 resultados para shoot system
Resumo:
Type IV secretion systems (T4SS) are used by Gram-negative bacteria to translocate protein and DNA substrates across the cell envelope and into target cells. Translocation across the outer membrane is achieved via a ringed tetradecameric outer membrane complex made up of a small VirB7 lipoprotein (normally 30 to 45 residues in the mature form) and the C-terminal domains of the VirB9 and VirB10 subunits. Several species from the genera of Xanthomonas phytopathogens possess an uncharacterized type IV secretion system with some distinguishing features, one of which is an unusually large VirB7 subunit (118 residues in the mature form). Here, we report the NMR and 1.0 angstrom X-ray structures of the VirB7 subunit from Xanthomonas citri subsp. citri (VirB7(XAC2622)) and its interaction with VirB9. NMR solution studies show that residues 27-41 of the disordered flexible N-terminal region of VirB7(XAC2622) interact specifically with the VirB9 C-terminal domain, resulting in a significant reduction in the conformational freedom of both regions. VirB7(XAC2622) has a unique C-terminal domain whose topology is strikingly similar to that of N0 domains found in proteins from different systems involved in transport across the bacterial outer membrane. We show that VirB7(XAC2622) oligomerizes through interactions involving conserved residues in the N0 domain and residues 42-49 within the flexible N-terminal region and that these homotropic interactions can persist in the presence of heterotropic interactions with VirB9. Finally, we propose that VirB(7XAC2622) oligomerization is compatible with the core complex structure in a manner such that the N0 domains form an extra layer on the perimeter of the tetradecameric ring.
Resumo:
Bacterial type III secretion systems deliver protein virulence factors to host cells. Here we characterize the interaction between HrpB2, a small protein secreted by the Xanthomonas citri subsp. citri type III secretion system, and the cytosolic domain of the inner membrane protein HrcU, a paralog of the flagellar protein FlhB. We show that a recombinant fragment corresponding to the C-terminal cytosolic domain of HrcU produced in E. coli suffers cleavage within a conserved Asn264-Pro265-Thr266-His267 (NPTH) sequence. A recombinant HrcU cytosolic domain with N264A, P265A, T266A mutations at the cleavage site (HrcU(AAAH)) was not cleaved and interacted with HrpB2. Furthermore, a polypeptide corresponding to the sequence following the NPTH cleavage site also interacted with HrpB2 indicating that the site for interaction is located after the NPTH site. Non-polar deletion mutants of the hrcU and hrpB2 genes resulted in a total loss of pathogenicity in susceptible citrus plants and disease symptoms could be recovered by expression of HrpB2 and HrcU from extrachromossomal plasmids. Complementation of the Delta hrcU mutant with HrcU(AAAH) produced canker lesions similar to those observed when complemented with wild-type HrcU. HrpB2 secretion however, was significantly reduced in the Delta hrcU mutant complemented with HrcU(AAAH), suggesting that an intact and cleavable NPTH site in HrcU is necessary for total functionally of T3SS in X. citri subsp. citri. Complementation of the Delta hrpB2 X. citri subsp. citri strain with a series of hrpB2 gene mutants revealed that the highly conserved HrpB2 C-terminus is essential for T3SS-dependent development of citrus canker symptoms in planta.
Resumo:
Although H(+) and OH(-) are the most common ions in aqueous media, they are not usually observable in capillary electrophoresis (CE) experiments, because of the extensive use of buffer solutions as the background electrolyte. In the present work, we introduce CE equipment designed to allow the determination of such ions in a similar fashion as any other ion. Basically, it consists of a four-compartment piece of equipment for electrolysis-separated experiments (D. P. de Jesus et at, Anal. Chem., 2005, 77, 607). In such a system, the ends of the capillary are placed in two reservoirs, which are connected to two other reservoirs through electrolyte-filled tubes. The electrodes of the high-voltage power source are positioned in these reservoirs. Thus, the electrolysis products are kept away from the inputs of the capillary. The detection was provided by two capacitively coupled contactless conductivity detectors (CD), each one positioned about 11 cm from the end of the capillary. Two applications were demonstrated: titration-like procedures for nanolitre samples and mobility measurements. Strong and weak acids (pK(a) < 5), pure or mixtures, could be titrated. The analytical curve is linear from 50 mu M up to 10 mM of total dissociable hydrogen (r = 0.99899 for n =10) in 10-nL samples. By including D(2)O in the running electrolyte, we could demonstrate how to measure the mixed proton/deuteron mobility. When H(2)O/D(2)O (9 : 1 v/v) was used as the solvent, the mobility was 289.6 +/- 0.5 x 10(-5) cm(2) V(-1) s(-1). Due to the fast conversion of the species, this value is related to the overall behaviour of all isotopologues and isotopomers of the Zundel and Eigen structures, as well as the Stokesian mobility of proton and deuteron. The effect of neutral (o-phenanthroline) and negatively charged (chloroacetate) bases and aprotic solvent (DMSO) over the H(+) mobility was also demonstrated.
Resumo:
The present work describes an investigation concerning the acetylation of celluloses extracted from short-life-cycle plant sources (i.e. sugarcane bagasse and sisal fiber) as well as microcrystalline cellulose. The acetylation was carried out under homogeneous conditions using the solvent system N,N-dimethylacetamide/lithium chloride. The celluloses were characterized, and the characterizations included an evaluation of the amount of hemicellulose present in the materials obtained from lignocellulosics sources (sugarcane and sisal). The amount of LiCl was varied and its influence on the degree of acetate substitution was analyzed. It was found that the solvent system composition and the nature of the cellulose influenced both the state of chain dissolution and the product characteristics. The obtained results demonstrated the importance of developing specific studies on the dissolution process as well as on the derivatization of celluloses from various sources.
Resumo:
Sedimentary organic matter is a good tool for environmental evaluation where the sediments are deposited. We determined the elemental and C- and N-isotopic compositions of 211 sub-surface sediment samples from 13 cores (ranging from 18 to 46cm), collected in the Cananeia-Iguape estuarine-lagoonal system. The aim of this research is to evaluate the environmental variations of this tropical coastal micro-tidal system over the last decades, through SOM distribution. The studied parameters show differences between the cores located in the northern (sandy-silt sediments) and southern (sand and silty-sand) portions. The whole area presents a mixed organic matter origin signature (local mangrove plants: < -25.6 parts per thousand PDB/ phytoplancton delta(13)C values: -19.4 parts per thousand PDB). The northern cores, which submitted higher sedimentation deposition (1.46cm year(-1)), are more homogenous, presenting lower delta(13)C (< -25.2 parts per thousand PDB) and higher C/N values (in general >14), directly related to the terrestrial input from Ribeira de Iguape River (24,000 km(2) basin). The southern portion presents lower sedimentation rates (0.38cm year(-1)) and is associated to a small river basin (1,340 km(2)), presenting values Of delta(13)C: -25.0 to 23.0 parts per thousand PDB and of C/N ratio: 11 to 15. In general, the elemental contents in the 15 cores may be considered from low to medium (< 2.0% C - < 0.1% N), compared to similar environments. Although a greater marine influence is observed in the southern system portion, the majority of the cores present an elevated increase of continental deposition, most likely related to the strong silting process that the area has been subjected to since the 1850s, when an artificial channel was built linking, directly, the Ribeira River to the estuarine-lagoonal system.
Resumo:
A green and highly sensitive analytical procedure was developed for the determination of free chlorine in natural waters, based on the reaction with N,N-diethyl-p-phenylenediamine (DPD). The flow system was designed with solenoid micro-pumps in order to improve mixing conditions by pulsed flows and to minimize reagent consumption as well as waste generation. A 100-cm optical path flow cell based on a liquid core waveguide was employed to increase sensitivity. A linear response was observed within the range 10.0 to 100.0 mu g L(-1), with the detection limit, coefficient of variation and sampling rate estimated as 6.8 mu g (99.7% confidence level), 0.9% (n = 20) and 60 determinations per hour, respectively. The consumption of the most toxic reagent (DPD) was reduced 20,000-fold and 30-fold in comparison to the batch method and flow injection with continuous reagent addition, respectively. The results for natural and tap water samples agreed with those obtained by the reference batch spectrophotometric procedure at the 95% confidence level. (C) 2010 Elsevier By. All rights reserved.
Resumo:
The exploitation of aqueous biphasic extraction is proposed for the first time in flow analysis This extraction strategy stands out for being environmentally attractive since it is based in the utilization of two immiscible phases that are intrinsically aqueous The organic solvents of the traditional liquid-liquid extractions ale no longer used, being replaced by non-toxic, non-flammable and non-volatile ones. A single interface flow analysis (SIFA) system was implemented to carry out the extraction process due to its favourable operational characteristics that include the high automation level and simplicity of operation, the establishment of a dynamic interface where the mass transfer occurred between the two immiscible aqueous phases, and the versatile control over the extraction process namely the extraction time The application selected to demonstrate the feasibility of SIFA to perform this aqueous biphasic extraction was the pre-concentration of lead. After extraction, lead reacted with 8-hydroxyquinoline-5-sulfonic acid and the resulting product was determined by a fluorimetric detector included in the flow manifold. Therefore, the SIFA single interface was used both as extraction (enrichment) and reaction interface. (C) 2010 Elsevier B.V All rights reserved.
Resumo:
In this work a downscaled multicommuted flow injection analysis setup for photometric determination is described. The setup consists of a flow system module and a LED based photometer, with a total internal volume of about 170 mu L The system was tested by developing an analytical procedure for the photometric determination of iodate in table salt using N,N-diethyl-henylenediamine (DPD) as the chromogenic reagent. Accuracy was accessed by applying the paired r-test between results obtained using the proposed procedure and a reference method, and no significant difference at the 95% confidence level was observed. Other profitable features, such as a low reagent consumption of 7.3 mu g DPD per determination: a linear response ranging from 0.1 up to 3.0 m IO(3)(-), a relative standard deviation of 0.9% (n = 11) for samples containing 0.5 m IO(3)(-), a detection limit of 17 mu g L(-1) IO(3)(-), a sampling throughput of 117 determination per hour, and a waste generation 600 mu L per determination, were also achieved. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A new procedure for spectrofluorimetric determination of free and total glycerol in biodiesel samples is presented. It is based on the oxidation of glycerol by periodate, forming formaldehyde, which reacts with acetylacetone, producing the luminescent 3,5-diacetyl-1,4-dihydrolutidine. A flow system with solenoid micro-pumps is proposed for solution handling. Free glycerol was extracted off-line from biodiesel samples with water, and total glycerol was converted to free glycerol by saponification with sodium ethylate under sonication. For free glycerol, a linear response was observed from 5 to 70 mg L(-1) with a detection limit of 0.5 mg L(-1), which corresponds to 2 mg kg(-1) in biodiesel. The coefficient of variation was 0.9% (20 mg L(-1), n = 10). For total glycerol, samples were diluted on-line, and the linear response range was 25 to 300 mg L(-1). The detection limit was 1.4 mg L(-1) (2.8 mg kg(-1) in biodiesel) with a coefficient of variation of 1.4% (200 mg L(-1), n = 10). The sampling rate was ca. 35 samples h(-1) and the procedure was applied to determination of free and total glycerol in biodiesel samples from soybean, cottonseed, and castor beans.
Resumo:
A fully automated methodology was developed for the determination of the thyroid hormones levothyroxine (T4) and liothyronine (T3). The proposed method exploits the formation of highly coloured charge-transfer (CT) complexes between these compounds, acting as electron donors, and pi-acceptors such as chloranilic acid (CIA) and 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ). For automation of the analytical procedure a simple, fast and versatile single interface flow system (SIFA)was implemented guaranteeing a simplified performance optimisation, low maintenance and a cost-effective operation. Moreover, the single reaction interface assured a convenient and straightforward approach for implementing job`s method of continuous variations used to establish the stoichiometry of the formed CT complexes. Linear calibration plots for levothyroxine and liothyronine concentrations ranging from 5.0 x 10(-5) to 2.5 x 10(-4) mol L(-1) and 1.0 x 10(-5) to 1.0 x 10(-4) mol L(-1), respectively, were obtained, with good precision (R.S.D. <4.6% and <3.9%) and with a determination frequency of 26 h(-1) for both drugs. The results obtained for pharmaceutical formulations were statistically comparable to the declared hormone amount with relative deviations lower than 2.1%. The accuracy was confirmed by carrying out recovery studies, which furnished recovery values ranging from 96.3% to 103.7% for levothyroxine and 100.1% for liothyronine. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A single reaction interface flow analysis (SIFA) system for the monitoring of mannitol in pharmaceutical formulations and human urine is presented. The developed approach takes advantage of the mannitol scavenger aptitude to inhibit the chemiluminescent reaction between luminol and myoglobin in the absence of H(2)O(2). The SIFA system facilitated the fully automation of the developed methodology, allowing the in-line reproducible handling of chemical species with a very short lifetime as is the case of the hydroxyl radical generated in the abovementioned luminol/myoglobin reaction. The proposed methodology allowed the determination of mannitol concentrations between 25 mmol L(-1) and 1 mol L(-1), with good precision (R.S.D. < 4.7%, n = 3) and a sampling frequency of about 60 h(-1). The procedure was applied to the determination of mannitol in pharmaceuticals and in human urine samples Without any pretreatment process. The results obtained for pharmaceutical formulations were statistically comparable to those provided by the reference method (R.D. < 4.6%); recoveries values obtained in the analysis of spiked urine samples (between 94.9 and 105.3% of the added amount) were also satisfactory. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Liquid-liquid microextraction without phase segmentation was implemented in a multicommuted flow system for determination of the anti-hypertensive diltiazem. The procedure was based on ion pair formation between the drug and the dye bromothymol blue at pH 3.5. The detection was performed without phase separation in a glass tube coupled to a fiber-optics spectrophotometer. The total volume of chloroform was reduced to 50 mu L in comparison with 10 mL consumed in batch. A linear response was observed between 9 and 120 mu mol L(-1), with a detection limit of 0.9 mu mol L(-1) (99.7% confidence level). The coefficient of variation (n = 10), sampling rate and extraction efficiency were estimated as 0.6%, 78 determinations per hour and 61%, respectively. About 30 mu g of bromothymol blue was consumed and the waste volume was 380 mu L per determination. The results for pharmaceutical samples agreed with those obtained by the reference procedure at the 95% confidence level. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The formation of the Mn(III)/EDTA complex in a flow system with solenoid micro-pumps was exploited for fast manganese determination in freshwater. Manganese(II) was oxidized in a solid-phase reactor containing lead dioxide immobilized on polyester. Long pathlength spectrophotometry was exploited to increase sensitivity, aiming to reach the threshold limit established by environmental legislation. A linear response was observed from 25 to 1500 mu g L(-1), with a detection limit of 6 mu g L(-1) (99.7% confidence level). Sample throughput and coefficient of variation were 36 samples/h and 2.6% (n = 10), respectively. EDTA consumption and waste generation were estimated as 500 mu g and 3 mL per determination, respectively. The amount of Pb in the residue corresponds to 250 mu g per determination and a solid-phase reactor could be used for up to 1600 determinations. Adsorption in active charcoal avoided interferences caused by organic matter and the developed procedure was successfully applied for determination of manganese in freshwater samples. Results were in agreement with those attained by GFAAS at the 95% confidence level. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A flow system designed with solenoid micro-pumps is proposed for the determination of paraquat in natural waters. The procedure involves the reaction of paraquat with dehydroascorbic acid followed by spectrophotometric measurements. The proposed procedure minimizes the main drawbacks related to the standard chromatographic procedure and to flow analysis and manual methods with spectrophotometric detection based on the reaction with sodium dithionite, i.e. high solvent consumption and waste generation and low sampling rate for chromatography and high instability of the reagent in the spectrophotometric procedures. A home-made 10-cm optical-path flow cell was employed for improving sensitivity and detection limit. Linear response was observed for paraquat concentrations in the range 0.10-5.0 mg L-1. The detection limit (99.7% confidence level), sampling rate and coefficient of variation (n = 10) were estimated as 22 mu g L-1, 63 measurements per hour and 1.0%, respectively. Results of determination of paraquat in natural water samples were in agreement with those achieved by the chromatographic reference procedure at the 95% confidence level. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
A novel flow-based strategy for implementing simultaneous determinations of different chemical species reacting with the same reagent(s) at different rates is proposed and applied to the spectrophotometric catalytic determination of iron and vanadium in Fe-V alloys. The method relies on the influence of Fe(II) and V(IV) on the rate of the iodide oxidation by Cr(VI) under acidic conditions, the Jones reducing agent is then needed Three different plugs of the sample are sequentially inserted into an acidic KI reagent carrier stream, and a confluent Cr(VI) solution is added downstream Overlap between the inserted plugs leads to a complex sample zone with several regions of maximal and minimal absorbance values. Measurements performed on these regions reveal the different degrees of reaction development and tend to be more precise Data are treated by multivariate calibration involving the PLS algorithm The proposed system is very simple and rugged Two latent variables carried out ca 95% of the analytical information and the results are in agreement with ICP-OES. (C) 2010 Elsevier B V. All rights reserved.