938 resultados para sewage
Resumo:
Sewage sludge produced by the SABESP wastewater treatment plant (Companhia de Saneamento Básico do Estado de São Paulo), located in Barueri, SP, Brazil, may contain high contents of nickel (Ni), increasing the risk of application to agricultural soils. An experiment was carried out under field conditions in Jaboticabal, SP, Brazil, with the objective of evaluating the effects on soil properties and on maize plants of increasing rates of a sewage sludge rich in Ni that had been applied for 6 consecutive years. The experiment was located on a Typic Haplorthox soil, using an experimental design of randomized blocks with four treatments (rates of sewage sludge) and five replications. At the end of the experiment the accumulated amounts of sewage sludge applied were 0.0, 30.0, 60.0 and 67.5 t ha-1. Maize (Zea mays L.) was the test plant. Soil samples were collected 60 d after sowing at depths of 0-20 cm for Ni studies and from 0 to 10 cm and from 10 to 20 cm for urease studies. Sewage sludge did not cause toxicity or micronutrient deficiencies to maize plants and increased grain production. Soil Ni appeared to be associated with the most stable fractions of the soil organic matter and was protected against strong extracting solutions such as concentrated and hot HNO3 and HCl. Ni added to the soil by sewage sludge increased the metal concentration in the shoots, but not in the grain. The Mehlich 3 extractor was not efficient to evaluate Ni phytoavailability to maize plants. Soil urease activity was increased by sewage sludge only in the layer where the residue was applied. © 2006 Elsevier Ltd. All rights reserved.
Resumo:
Abstract The final disposal of residues generated at sewage treatment plants (STPs) has become a major problem for cities, due to the increase in the amount of treated sewage. One of the alternatives for the residue, labeled sewage sludge, is its reuse in agriculture and in degraded soil. However, not all pathogens and metals present in it are eliminated during treatment. Diplopods have been used as bioindicators in ecotoxicological tests as they are constantly in close contact with the soil. Owing to this fact, the purpose of this study was to expose specimens of the diplopod Rhinocricus padbergi to substrate containing sewage sludge collected at STPs to analyze morphological alterations in their parietal and perivisceral fat body, where substances are stored. The exposures were held for 7, 15, or 90 days at different concentrations of sewage sludge (control, 1%, 10%, and 50%). The parietal fat body showed no alterations in any of the three exposure periods or concentrations. Alterations in the perivisceral fat body were observed for all exposure periods. According to the results, we suggest that the sludge used has toxic agents responsible for changing the animal's perivisceral fat body. © 2012 Microscopy Society of America.
Resumo:
The good efficiency in a sewage treatment plant (WWTP) is a great importance to the environment. The management of electromechanical equipment installed in these stations is a major challenge due to the fact that they are installed on areas of difficult access and maintenance unhealthy and making the time for the correction of any faults is extended. This paper proposes the development of a Wireless Sensor Network (WSN), in order to monitor electromechanical equipment, allowing the Concessionaire a predictive control in real time. The design of a wireless sensors network for monitoring equipment requires not only the development and assembly of the sensor modules, but must also include the development of software for managing the data collected. Thus, this work includes a Zigbee WSN, small, adapted for monitoring of electromechanical equipment and environmental conditions of a WWTP, type stabilization pond, installed in an area of approximately 0.15 km 2 and the average flow of 320 liters of treatment per second. The experimental results show that this monitoring system can perform with the collection of parameters of performance and quality assessment at the station.
Biomass and yield of peanut grown on tropical soil amended with sewage sludge contaminated with lead
Resumo:
Application of sewage sludge with high lead (Pb) contents may pollute soils and contaminate crops. The objective of this work was to evaluate peanut responses to application of sewage sludge with varying Pb contents in order to supply phosphorus (P) to the plant. A greenhouse experiment was carried out with peanut grown on soil sample from a medium-textured Haplustox. Treatments were arranged in 3 × 2 + 2 factorial scheme, replicated three times, distributed in randomized block design, and consisted of: three Pb rates applied to soil with sewage sludge (3, 21, and 42 mg kg-1) × two times of sewage sludge application (30 days before peanut sowing and at the day of the sowing) + mineral fertilization + control (without sewage sludge and mineral fertilization). Sewage sludge was efficient to supply P to peanut. Sewage sludge containing high rates of Pb, when applied, did not harm biomass and yield of the plant, but increased HCl-extractable Pb in soil and Pb content in shoot, roots, and pod husks. Increase of Pb content in pod husks may represent contamination risk of kernels and their products with fragments from husks detached during manipulation or industrial processing of peanuts. © 2012 Fábio Camilotti et al.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Sewage sludge may be used as an agricultural fertilizer, but the practice has been criticized because sludge may contain trace elements and pathogens. The aim of this study was to compare the effectiveness of total and pseudototal extractants of Cu, Fe, Mn, and Zn, and to compare the results with the bioavailable concentrations of these elements to maize and sugarcane in a soil that was amended with sewage sludge for 13 consecutive years and in a separate soil that was amended a single time with sewage sludge and composted sewage sludge. The 13-year amendment experiment involved 3 rates of sludge (5, 10, and 20 t ha-1). The one-time amendment experiment involved treatments reflecting 50, 100, and 200 % of values stipulated by current legislation. The metal concentrations extracted by aqua regia (AR) were more similar to those obtained by Environmental Protection Agency (EPA) 3052 than to those obtained by EPA3051, and the strongest correlation was observed between pseudo(total) concentrations extracted by AR and EPA3052 and bioavailable concentrations obtained by Mehlich III. An effect of sewage sludge amendment on the concentrations of heavy metals was only observed in samples from the 13-year experiment. © 2012 Springer Science+Business Media B.V.
Resumo:
In this paper, we report on a field experiment being carried out in a Typic Eutrorthox. The experiment was initiated in the 1997-98 agricultural season as a randomized block design with four treatments (0, 5, 10, and 20 t ha -1) of sewage sludge and five replicates. Compound soil samples were obtained from 20 subsamples collected at depths of 0-0.1 and 0.1-0.2 m. Cu, Fe, Mn, and Zn concentrations were extracted with DTPA pH 7.3; 0.1 mol L -1 HCl, Mehlich-I, Mehlich-III, and 0.01 mol L-1 CaCl 2. Metal concentrations were determined via atomic absorption spectrometry. Diagnostic leaves and the whole above-ground portion of plants were collected to determine Cu, Fe, Mn, and Zn concentrations extracted by nitric-perchloric digestion and later determined via atomic absorption spectrometry. Sewage sludge application caused increases in the concentrations of soil Cu, Fe, and Mn in samples taken from the 0-0.1 m depth evaluated by the extractants Mehlich-I, Mehlich-III, 0.01 mol L-1 HCl and DTPA pH 7.3. None of the extractants provided efficient estimates of changes in Mn concentrations. The acid extractants extracted more Cu, Fe, Mn, and Zn than the saline and chelating solutions. The highest concentrations of Cu, Fe, and Zn were obtained with Mehlich-III, while the highest concentrations of Mn were obtained with HCl. We did not observe a correlation between the extractants and the concentrations of elements in the diagnostic leaves nor in the tissues of the whole maize plant (Zea mays L.). © 2013 Springer Science+Business Media Dordrecht.
Resumo:
The increased production of urban sewage sludge requires alternative methods for final disposal. A very promising choice is the use of sewage sludge as a fertilizer in agriculture, since it is rich in organic matter, macro and micronutrients. However, urban sewage sludge may contain toxic substances that may cause deleterious effects on the biota, water and soil, and consequently on humans. There is a lack of studies evaluating how safe the consumption of food cultivated in soils containing urban sewage sludge is. Thus, the aim of this paper was to evaluate biochemical and redox parameters in rats fed with corn produced in a soil treated with urban sewage sludge for a long term. For these experiments, maize plants were grown in soil amended with sewage sludge (rates of 5, 10 and 20. t/ha) or not (control). Four different diets were prepared with the corn grains produced in the field experiment, and rats were fed with these diets for 1, 2, 4, 8 and 12 weeks. Biochemical parameters (glucose, total cholesterol and fractions, triglycerides, aspartate aminotransferase and alanine aminotransferase) as well the redox state biomarkers such as reduced glutathione (GSH), malondialdehyde (MDA), catalase, glutathione peroxidase and butyrylcholinesterase (BuChE) were assessed. Our results show no differences in the biomarkers over 1 or 2 weeks. However, at 4 weeks BuChE activity was inhibited in rats fed with corn grown in soil amended with sewage sludge (5, 10 and 20. t/ha), while MDA levels increased. Furthermore, prolonged exposure to corn cultivated in the highest amount per hectare of sewage sludge (8 and 12 weeks) was associated with an increase in MDA levels and a decrease in GSH levels, respectively. Our findings add new evidence of the risks of consuming food grown with urban sewage sludge. However, considering that the amount and type of toxic substances present in urban sewage sludge varies considerably among different sampling areas, further studies are needed to evaluate sludge samples collected from different sources and/or undergoing different types of treatment. © 2013 Elsevier Inc.
Resumo:
Incluye Bibliografía
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper has the objective of monitoring the biological activity of composting process of sewage sludge, sugarcane bagasse and ground coffee in a hermetic rotary reactor using the respirometric method in laboratory scale, in order to obtain parameters and system design for large scale projects. Another particularity of this study is the use of a hermetic reactor with gas purging cycles. Purging was performed when the percentage of oxygen reached less than 5%, thus eliminating the gaseous mixture (with elevated CO2 ratio) and the introduction of environmental air with around 21% of O2, successively until the compost was stabilized. The average purge intervals obtained were 29 h and 2 min with reactor rotation frequency of 15 min. The time of the compost stabilization was optimized in 60% if compared to the 90 days in the traditional method. The results obtained can be used to design the process in industrial scale using a simple O2 gas analyzer.
Resumo:
When the well "goes dry" or when the windmill or pump breaks down, every one in the household immediately appreciates the value fo plenty of water. In other words, "You never miss the water until the well runs dry." Fortunately, in most sections of this state, plenty of pure water may be obtained by sinking wells of moderate depth, yet surprisingly few farm homes are supplied with running water in the kitchen even though the barn yards are equipped with hydrants and tanks. It is the purpose of this bulletin to present a number of water supply and sewage disposal systems which have been used in Nebraska and surrounding states and which add greatly to the comfort and convenience of the farm home.
Resumo:
Sediments from Admiralty Bay, Antarctica were collected during the austral summers of 2002/2003 and 2003/2004 in order to assess the distribution and concentration of sewage indicators originating from Comandante Ferraz Brazilian Antarctic Station. Fecal sterols (coprostanol + epicoprostanol) and linear alkylbenzenes (LABs) ranged from <0.01 to 0.95 mu g g(-1) and <1.0 to 23 ng g(-1) dry weight, respectively. In general, the higher concentrations were found only locally in the vicinity of Ferraz station at Martel Inlet. Baseline values for fecal sterols and coprostanone were calculated as 0.19 and 0.40 mu g g(-1), respectively. According to fecal sterols concentrations, sewage contribution to Martel Inlet has increased more than twice since 1997, as result of the increase in the number of researchers at the station especially during the last decade. A low correlation was found between total LABs and fecal steroids, which could be attributed to the contribution of the natural sources of steroids. (C) 2010 Elsevier B.V. All rights reserved.