982 resultados para segmental torso masses
Resumo:
In this work, using the fact that in 3-3-1 models the same leptonic bilinear contributes to the masses of both charged leptons and neutrinos, we develop an effective operator mechanism to generate mass for all leptons. The effective operators have dimension five for the case of charged leptons and dimension seven for neutrinos. By adding extra scalar multiplets and imposing the discrete symmetry Z(9)xZ(2) we are able to generate realistic textures for the leptonic mixing matrix. This mechanism requires new physics at the TeV scale.
Resumo:
We show that there is a general sort of neutrino effective interactions which allows, under certain conditions, to have relatively large magnetic dipole moments for neutrinos while keeping their masses non-calculable and arbitrarily small. The main ingredient of our mechanism for generating large magnetic moment to the neutrinos is the existence of a neutral scalar which has the only role to give mass to the neutrinos or the existence of flavor changing neutral currents in the neutrino sector. Although our approach is model independent, some models in which those interactions arise are commented.
Resumo:
In this work we show that we can generate neutrino masses through the type II seesaw mechanism working at TeV scale in the context of a 331 model. (C) 2001 Published by Elsevier B.V. B.V.
Resumo:
We consider the mass generation for both charginos and neutralinos in a 3-3-1 supersymmetric model. We show that R-parity breaking interactions leave the electron and one of the neutrinos massless at the tree level. However, the same interactions induce masses for these particles at the 1-loop level. Unlike the similar situation in the minimal supersymmetric standard model, the masses of the neutralinos are related to the masses of the charginos.
Resumo:
Recently it has been pointed out that no limits can be put on the scale of fermion mass generation (M) in technicolor models, because the relation between the fermion masses (m(f)) and M depends on the dimensionality of the interaction responsible for generating the fermion mass. Depending on this dimensionality it may happen that m(f) does not depend on M at all. We show that exactly in this case m(f) may reach its largest value, which is almost saturated by the top quark mass. We make a few comments on the question of how large a dynamically generated fermion mass can be.
Resumo:
A new mechanism for understanding small neutrino masses using only simple new physics at the TeV scale is proposed. As an application, it is shown how it can naturally lead to the mass hierarchy of the so-called bimaximal mixing in the case of three active neutrinos, or to the 3 + 1 scenario with a sterile neutrino, using only the SU(2)(L) quantum numbers of the particles. (C) 2001 Elsevier B.V. BN. All rights reserved.
Resumo:
In this work we show that in a version of the 3-3-1 model proposed by Duong and Ma, in which the introduction of a scalar sextet is avoided by adding a singlet heavy charged lepton, the tau lepton gains mass through a seesawlike mechanism. We also show how to generate neutrino masses at the one-loop level, and give the respective Maki-Nakagawa-Sakata mixing matrices for a set of the parameters. We also consider the effect of adding a singlet right-handed neutrino.
Resumo:
Some years ago it was shown by Ma that in the context of the electroweak standard model there are, at the tree level, only three ways to generate small neutrino masses by the seesaw mechanism via one effective dimension-five operator. Here we extend this approach to 3-3-1 chiral models showing that in this case there are several dimension-five operators and we also consider their tree level realization.
Resumo:
We show that in any invisible axion model due to the effects of effective nonrenormalizable interactions related to an energy scale near the Peccei-Quinn, grand unification or even the Planck scale, active neutrinos necessarily acquire masses in the sub-eV range. Moreover, if sterile neutrinos are also included and if appropriate cyclic Z(N) symmetries are imposed, it is possible that some of these neutrinos are heavy while others are light.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We consider an electroweak model based on the gauge symmetry SU(2)(L) circle times U(1)(Y') circle times U(1)(B-L) which has right-handed neutrinos with different exotic B - L quantum numbers. Because of this particular feature we are able to write Yukawa terms, and right-handed neutrino mass terms, with scalar fields that can develop vacuum expectation values belonging to different energy scales. We make a detailed study of the scalar and the Yukawa neutrino sectors to show that this model is compatible with the observed solar and atmospheric neutrino mass scales and the tribimaximal mixing matrix. We also show that there are dark matter candidates if a Z(2) symmetry is included.