964 resultados para seawater
Resumo:
The oxidation and reduction of copper in air-saturated seawater and NaCl solutions has been measured as a function of pH (7.17-8.49), temperature (5-35ºC) and ionic strength (0.1-0.7 M). The oxidation rate was fitted to an equation for sodium chloride and seawater valid at different pH and media conditions: k . . pH- . /T- . I . I k . . pH- . /T- . I . I (sw) (NaCl) log 5 036 0 514 1764 915 1101 0 233 log 5 221 0 609 1915 433 1818 0 408 = + + = + + The reduction of Cu(II) was studied in both media for different initial concentration of copper(II). When the initial Cu(II) concentration was 200 nM, the copper(I) produced was 20% and 9% for NaCl and seawater, respectively. Considering the copper(I) reduced from Cu(II), the speciation and the contribution of these species to the kinetic process was studied. The Cu(I) speciation is dominated by the CuCl2 - species. On the other hand, the neutral chloride CuCl species dominates the Cu(I) oxidation in the range 0.1 M to 0.7 M chloride concentrations.
Resumo:
[EN]This study presents the evaluation of seven pharmaceutical compounds belonging to different commonly used therapeutic classes in seawater samples from coastal areas of Gran Canaria Island. The target compounds include atenolol (antihypertensive), acetaminophen (analgesic), norfloxacin and ciprofloxacin (antibiotics), carbamazepine (antiepileptic) and ketoprofen and diclofenac (anti-inflammatory). Solid phase extraction (SPE) was used for the extraction and preconcentration of the samples, and liquid chromatography tandem mass spectrometry (LC-MS/MS) was used for the determination of the compounds. Under optimal conditions, the recoveries obtained were in the range of 78.3% to 98.2%, and the relative standard deviations were less than 11.8%. The detection and quantification limits of the method were in the ranges of 0.1–2.8 and 0.3–9.3 ng·L−1, respectively. The developed method was applied to evaluate the presence of these pharmaceutical compounds in seawater from four outfalls in Gran Canaria Island (Spain) during one year. Ciprofloxacin and norfloxacin were found in a large number of samples in a concentration range of 9.0–3551.7 ng·L−1. Low levels of diclofenac, acetaminophen and ketoprofen were found sporadically.
Chemistry of Fe(II) in the presence of organic exudates from phytoplankton and of copper in seawater
Resumo:
Programa de doctorado de Oceanografía ; 2006-2008
Resumo:
Ocean acidification is an effect of the rise in atmospheric CO2, which causes a reduction in the pH of the ocean and generates a number of changes in seawater chemistry and consequently potentially impacts seawater life. The effect of ocean acidification on metabolic processes (such as net community production and community respiration and on particulate organic carbon (POC) concentrations was investigated in summer 2012 at Cap de la Revellata in Corsica (Calvi, France). Coastal surface water was enclosed in 9 mesocosms and subjected to 6 pCO2 levels (3 replicated controls and 6 perturbations) for approximately one month. No trend was found in response to increasing pCO2 in any of the biological and particulate analyses. Community respiration was relatively stable throughout the experiment in all mesocosms, and net community production was most of the time close to zero. Similarly, POC concentrations were not affected by acidification during the whole experimental period. Such as the global ocean, the Mediterranean Sea has an oligotrophic nature. Based on present results, it seems likely that seawater acidification will not have significant effects on photosynthetic rates, microbial metabolism and carbon transport.
Resumo:
It has been argued that past changes in the sources of Nd could hamper the use of the Nd isotopic composition (ϵNd) as a proxy for past changes in the overturning of deep water masses. Here we reconsider uncertainties associated with ϵNd in seawater due to potential regional to global scale changes in the sources of Nd by applying a modeling approach. For illustrative purposes we describe rather extreme changes in the magnitude of source fluxes, their isotopic composition or both. We find that the largest effects on ϵNd result from changes in the boundary source. Considerable changes also result from variations in the magnitude or ϵNd of dust and rivers but are largely constrained to depths shallower than 1 km, except if they occur in or upstream of regions where deep water masses are formed. From these results we conclude that changes in Nd sources have the potential to affect ϵNd. However, substantial changes are required to generate large-scale changes inϵNd in deep water that are similar in magnitude to those that have been reconstructed from sediment cores or result from changes in meridional overturning circulation in model experiments. Hence, it appears that a shift in ϵNdcomparable to glacial-interglacial variations is difficult to obtain by changes in Nd sources alone, but that more subtle variations can be caused by such changes and must be interpreted with caution.
Resumo:
The effect of descaling injury on the osmoregulatory ability of hatchery Atlantic salmon Salmo salar smolts in seawater was investigated. Experimental series were initiated during early, middle, and late periods of the spring smolt migration (April 25, May 11, and May 31, respectively). For each time series, descaled smolts (subjected to descaling on 10% of the body surface area) and control smolts (held out of water for 15 s) were transferred to seawater at 0, 1, 3, or 7 d posttreatment. After fish were held in 35% seawater for 24 h, gill and blood samples were collected and analyzed for Na(+),K(+)-ATPase activity and plasma osmolyte levels. Based on gill Na(+),K(+)-ATPase activity, the three series spanned the period from early smolting (increasing activity) to de-smolting (decreasing activity). In each series, descaled fish transferred to seawater at 0 and 1 d posttreatment had greater plasma osmolality than control fish; descaled fish transferred to seawater at 3 d posttreatment did not differ from controls. The greatest perturbation in osmolality (70 milliosmoles) was observed at the peak of smolting (middle series), whereas lesser increases were seen for early and late-series smolts. The observed osmotic perturbations in descaled fish would probably reduce performance and decrease survival during smolt migration.
Resumo:
The Lasail mining area (Sultanate of Oman) was contaminated by acid mine drainage during the exploitation and processing of local and imported copper ore and the subsequent deposition of sulphide-bearing waste material into an unsealed tailings dump. In this arid environment, the use of seawater in the initial stages of ore processing caused saline contamination of the fresh groundwater downstream of the tailings dump. After detection of the contamination in the 1980s, different source-controlled remediation activities were conducted including a seepage water collection system and, in 2005, surface sealing of the tailings dump using an HDPE-liner to prevent further infiltration of meteoric water. We have been assessing the benefits of the remediation actions undertaken so far. We present chemical and isotopic (δ18O, δ 2H, 3H) groundwater data from a long-term survey (8–16 years) of the Wadi Suq aquifer along a 28 km profile from the tailings dump to the Gulf of Oman. Over this period, most metal concentrations in the Wadi Suq groundwater decreased below detection limits. In addition, in the first boreholes downstream of the tailings pond, the salinity contamination has decreased by 30 % since 2005. This decrease appears to be related to the surface coverage of the tailings pond, which reduces flushing of the tailings by the sporadic, but commonly heavy, precipitation events. Despite generally low metal concentrations and the decreased salinity, groundwater quality still does not meet the WHO drinking water guidelines in more than 90 % of the Wadi Suq aquifer area. The observations show that under arid conditions, use of seawater for ore processing or any other industrial activity has the potential to contaminate aquifers for decades.