987 resultados para scattering surface


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims. Permittivity measurements on porous samples of volcanic origin have been performed in the 0.05-190 GHz range under laboratory conditions in support of the Rosetta mission to comet 67P/Churyumov-Gerasimenko, specifically with the MIRO radiometric experiment and CONSERT radar experiment. Methods. The samples were split into several subsamples with different size ranges covering a few mu m to 500 mu m. Bulk densities of the subsamples were estimated to be in the 800 to 1500 kg/m(3) range. The porosities were in the range of 48% to 65%. From 50 MHz to 6 GHz and at 190 GHz, permittivity has been determined with a coaxial cell and with a quasi-optical bench, respectively. Results. Without taking into account the volume-scattering effect at 190 GHz, the real part of the permittivity, normalized by the bulk density, is in the range of 2.1 to 2.6. The results suggest that the real part of the permittivity of an ice-free dust mantle covering the nucleus is in the 1.5-2.2 range at 190 GHz. From these values, a lower limit for the absorption length for the millimeter receiver of MIRO has been estimated to be between 0.6 and 2 cm, in agreement with results obtained from MIRO in September 2014. At frequencies of interest for CONSERT experiment, the real part of the permittivity of a suspected ice-free dust mantle should be below 2.2. It may be in the range of 1.2 to 1.7 for the nucleus, in agreement with first CONSERT results, taking into account a mean temperature of 110 K and different values for the dust-to-ice volumetric ratio. Estimations of contributions of the different parameters to the permittivity variation may indicate that the porosity is the main parameter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data set provides continuous measurements made with an Aquatic Laser Fluorescence Analyzer (ALFA) (Chekalyuk et al., 2014), connected in-line to the TARA flow through system during 2013. The ALFA instrument provides dual-wavelength excitation (405 and 514 nm) of laser-stimulated emission (LSE) for spectral and temporal analysis. It offers in vivo fluorescence assessments of phytoplankton pigments, biomass, photosynthetic yield (Fv/Fm), phycobiliprotein (PBP)-containing phytoplankton groups, and chromophoric dissolved organic matter (CDOM) (Chekalyuk and Hafez, 2008; 2013A). Spectral deconvolution (SDC) is used to assess the overlapped spectral bands of aquatic fluorescence constituents and water Raman scattering (R). The Fv/Fm measurements are spectrally corrected for non-chlorophyll fluorescence background produced by CDOM and other constituents (Chekalyuk and Hafez, 2008). The sensor was cleaned weakly following the manufacturer recommended protocol.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An efficient approach for the simulation of ion scattering from solids is proposed. For every encountered atom, we take multiple samples of its thermal displacements among those which result in scattering with high probability to finally reach the detector. As a result, the detector is illuminated by intensive “showers,” where each event of detection must be weighted according to the actual probability of the atom displacement. The computational cost of such simulation is orders of magnitude lower than in the direct approach, and a comprehensive analysis of multiple and plural scattering effects becomes possible. We use this method for two purposes. First, the accuracy of the approximate approaches, developed mainly for ion-beam structural analysis, is verified. Second, the possibility to reproduce a wide class of experimental conditions is used to analyze some basic features of ion-solid collisions: the role of double violent collisions in low-energy ion scattering; the origin of the “surface peak” in scattering from amorphous samples; the low-energy tail in the energy spectra of scattered medium-energy ions due to plural scattering; and the degradation of blocking patterns in two-dimensional angular distributions with increasing depth of scattering. As an example of simulation for ions of MeV energies, we verify the time reversibility for channeling and blocking of 1-MeV protons in a W crystal. The possibilities of analysis that our approach offers may be very useful for various applications, in particular, for structural analysis with atomic resolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A uniform geometrical theory of diffraction (UTD) solution is developed for the canonical problem of the electromagnetic (EM) scattering by an electrically large circular cylinder with a uniform impedance boundary condition (IBC), when it is illuminated by an obliquely incident high frequency plane wave. A solution to this canonical problem is first constructed in terms of an exact formulation involving a radially propagating eigenfunction expansion. The latter is converted into a circumferentially propagating eigenfunction expansion suited for large cylinders, via the Watson transform, which is expressed as an integral that is subsequently evaluated asymptotically, for high frequencies, in a uniform manner. The resulting solution is then expressed in the desired UTD ray form. This solution is uniform in the sense that it has the important property that it remains continuous across the transition region on either side of the surface shadow boundary. Outside the shadow boundary transition region it recovers the purely ray optical incident and reflected ray fields on the deep lit side of the shadow boundary and to the modal surface diffracted ray fields on the deep shadow side. The scattered field is seen to have a cross-polarized component due to the coupling between the TEz and TMz waves (where z is the cylinder axis) resulting from the IBC. Such cross-polarization vanishes for normal incidence on the cylinder, and also in the deep lit region for oblique incidence where it properly reduces to the geometrical optics (GO) or ray optical solution. This UTD solution is shown to be very accurate by a numerical comparison with an exact reference solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Con esta tesis ”Desarrollo de una Teoría Uniforme de la Difracción para el Análisis de los Campos Electromagnéticos Dispersados y Superficiales sobre un Cilindro” hemos iniciado una nueva línea de investigación que trata de responder a la siguiente pregunta: ¿cuál es la impedancia de superficie que describe una estructura de conductor eléctrico perfecto (PEC) convexa recubierta por un material no conductor? Este tipo de estudios tienen interés hoy en día porque ayudan a predecir el campo electromagnético incidente, radiado o que se propaga sobre estructuras metálicas y localmente convexas que se encuentran recubiertas de algún material dieléctrico, o sobre estructuras metálicas con pérdidas, como por ejemplo se necesita en determinadas aplicaciones aeroespaciales, marítimas o automovilísticas. Además, desde un punto de vista teórico, la caracterización de la impedancia de superficie de una estructura PEC recubierta o no por un dieléctrico es una generalización de varias soluciones que tratan ambos tipos de problemas por separado. En esta tesis se desarrolla una teoría uniforme de la difracción (UTD) para analizar el problema canónico del campo electromagnético dispersado y superficial en un cilindro circular eléctricamente grande con una condición de contorno de impedancia (IBC) para frecuencias altas. Construir una solución basada en UTD para este problema canónico es crucial en el desarrollo de un método UTD para el caso más general de una superficie arbitrariamente convexa, mediante el uso del principio de localización de los campos electromagnéticos a altas frecuencias. Esta tesis doctoral se ha llevado a cabo a través de una serie de hitos que se enumeran a continuación, enfatizando las contribuciones a las que ha dado lugar. Inicialmente se realiza una revisión en profundidad del estado del arte de los métodos asintóticos con numerosas referencias. As í, cualquier lector novel puede llegar a conocer la historia de la óptica geométrica (GO) y la teoría geométrica de la difracción (GTD), que dieron lugar al desarrollo de la UTD. Después, se investiga ampliamente la UTD y los trabajos más importantes que pueden encontrarse en la literatura. As í, este capítulo, nos coloca en la posición de afirmar que, hasta donde nosotros conocemos, nadie ha intentado antes llevar a cabo una investigación rigurosa sobre la caracterización de la impedancia de superficie de una estructura PEC recubierta por un material dieléctrico, utilizando para ello la UTD. Primero, se desarrolla una UTD para el problema canónico de la dispersión electromagnética de un cilindro circular eléctricamente grande con una IBC uniforme, cuando es iluminado por una onda plana con incidencia oblicua a frecuencias altas. La solución a este problema canónico se construye a partir de una solución exacta mediante una expansión de autofunciones de propagación radial. Entonces, ésta se convierte en una nueva expansión de autofunciones de propagación circunferencial muy apropiada para cilindros grandes, a través de la transformación de Watson. De esta forma, la expresión del campo se reduce a una integral que se evalúa asintóticamente, para altas frecuencias, de manera uniforme. El resultado se expresa según el trazado de rayos descrito en la UTD. La solución es uniforme porque tiene la importante propiedad de mantenerse continua a lo largo de la región de transición, a ambos lados de la superficie del contorno de sombra. Fuera de la región de transición la solución se reduce al campo incidente y reflejado puramente ópticos en la región iluminada del cilindro, y al campo superficial difractado en la región de sombra. Debido a la IBC el campo dispersado contiene una componente contrapolar a causa de un acoplamiento entre las ondas TEz y TMz (donde z es el eje del cilindro). Esta componente contrapolar desaparece cuando la incidencia es normal al cilindro, y también en la región iluminada cuando la incidencia es oblicua donde el campo se reduce a la solución de GO. La solución UTD presenta una muy buena exactitud cuando se compara numéricamente con una solución de referencia exacta. A continuación, se desarrolla una IBC efectiva para el cálculo del campo electromagnético dispersado en un cilindro circular PEC recubierto por un dieléctrico e iluminado por una onda plana incidiendo oblicuamente. Para ello se derivan dos impedancias de superficie en relación directa con las ondas creeping y de superficie TM y TE que se excitan en un cilindro recubierto por un material no conductor. Las impedancias de superficie TM y TE están acopladas cuando la incidencia es oblicua, y dependen de la geometría del problema y de los números de onda. Además, se ha derivado una impedancia de superficie constante, aunque con diferente valor cuando el observador se encuentra en la zona iluminada o en la zona de sombra. Después, se presenta una solución UTD para el cálculo de la dispersión de una onda plana con incidencia oblicua sobre un cilindro eléctricamente grande y convexo, mediante la generalización del problema canónico correspondiente al cilindro circular. La solución asintótica es uniforme porque se mantiene continua a lo largo de la región de transición, en las inmediaciones del contorno de sombra, y se reduce a la solución de rayos ópticos en la zona iluminada y a la contribución de las ondas de superficie dentro de la zona de sombra, lejos de la región de transición. Cuando se usa cualquier material no conductor se excita una componente contrapolar que tiende a desaparecer cuando la incidencia es normal al cilindro y en la región iluminada. Se discuten ampliamente las limitaciones de las fórmulas para la impedancia de superficie efectiva, y se compara la solución UTD con otras soluciones de referencia, donde se observa una muy buena concordancia. Y en tercer lugar, se presenta una aproximación para una impedancia de superficie efectiva para el cálculo de los campos superficiales en un cilindro circular conductor recubierto por un dieléctrico. Se discuten las principales diferencias que existen entre un cilindro PEC recubierto por un dieléctrico desde un punto de vista riguroso y un cilindro con una IBC. Mientras para un cilindro de impedancia se considera una impedancia de superficie constante o uniforme, para un cilindro conductor recubierto por un dieléctrico se derivan dos impedancias de superficie. Estas impedancias de superficie están asociadas a los modos de ondas creeping TM y TE excitadas en un cilindro, y dependen de la posición y de la orientación del observador y de la fuente. Con esto en mente, se deriva una solución UTD con IBC para los campos superficiales teniendo en cuenta las dependencias de la impedancia de superficie. La expansión asintótica se realiza, mediante la transformación de Watson, sobre la representación en serie de las funciones de Green correspondientes, evitando as í calcular las derivadas de orden superior de las integrales de tipo Fock, y dando lugar a una solución rápida y precisa. En los ejemplos numéricos realizados se observa una muy buena precisión cuando el cilindro y la separación entre el observador y la fuente son grandes. Esta solución, junto con el método de los momentos (MoM), se puede aplicar para el cálculo eficiente del acoplamiento mutuo de grandes arrays conformados de antenas de parches. Los métodos propuestos basados en UTD para el cálculo del campo electromagnético dispersado y superficial sobre un cilindro PEC recubierto de dieléctrico con una IBC efectiva suponen un primer paso hacia la generalización de una solución UTD para superficies metálicas convexas arbitrarias cubiertas por un material no conductor e iluminadas por una fuente electromagnética arbitraria. ABSTRACT With this thesis ”Development of a Uniform Theory of Diffraction for Scattered and Surface Electromagnetic Field Analysis on a Cylinder” we have initiated a line of investigation whose goal is to answer the following question: what is the surface impedance which describes a perfect electric conductor (PEC) convex structure covered by a material coating? These studies are of current and future interest for predicting the electromagnetic (EM) fields incident, radiating or propagating on locally smooth convex parts of highly metallic structures with a material coating, or by a lossy metallic surfaces, as for example in aerospace, maritime and automotive applications. Moreover, from a theoretical point of view, the surface impedance characterization of PEC surfaces with or without a material coating represents a generalization of independent solutions for both type of problems. A uniform geometrical theory of diffraction (UTD) is developed in this thesis for analyzing the canonical problem of EM scattered and surface field by an electrically large circular cylinder with an impedance boundary condition (IBC) in the high frequency regime, by means of a surface impedance characterization. The construction of a UTD solution for this canonical problem is crucial for the development of the corresponding UTD solution for the more general case of an arbitrary smooth convex surface, via the principle of the localization of high frequency EM fields. The development of the present doctoral thesis has been carried out through a series of landmarks that are enumerated as follows, emphasizing the main contributions that this work has given rise to. Initially, a profound revision is made in the state of art of asymptotic methods where numerous references are given. Thus, any reader may know the history of geometrical optics (GO) and geometrical theory of diffraction (GTD), which led to the development of UTD. Then, the UTD is deeply investigated and the main studies which are found in the literature are shown. This chapter situates us in the position to state that, as far as we know, nobody has attempted before to perform a rigorous research about the surface impedance characterization for material-coated PEC convex structures via UTD. First, a UTD solution is developed for the canonical problem of the EM scattering by an electrically large circular cylinder with a uniform IBC, when it is illuminated by an obliquely incident high frequency plane wave. A solution to this canonical problem is first constructed in terms of an exact formulation involving a radially propagating eigenfunction expansion. The latter is converted into a circumferentially propagating eigenfunction expansion suited for large cylinders, via the Watson transformation, which is expressed as an integral that is subsequently evaluated asymptotically, for high frequencies, in a uniform manner. The resulting solution is then expressed in the desired UTD ray form. This solution is uniform in the sense that it has the important property that it remains continuous across the transition region on either side of the surface shadow boundary. Outside the shadow boundary transition region it recovers the purely ray optical incident and reflected ray fields on the deep lit side of the shadow boundary and to the modal surface diffracted ray fields on the deep shadow side. The scattered field is seen to have a cross-polarized component due to the coupling between the TEz and TMz waves (where z is the cylinder axis) resulting from the IBC. Such cross-polarization vanishes for normal incidence on the cylinder, and also in the deep lit region for oblique incidence where it properly reduces to the GO or ray optical solution. This UTD solution is shown to be very accurate by a numerical comparison with an exact reference solution. Then, an effective IBC is developed for the EM scattered field on a coated PEC circular cylinder illuminated by an obliquely incident plane wave. Two surface impedances are derived in a direct relation with the TM and TE surface and creeping wave modes excited on a coated cylinder. The TM and TE surface impedances are coupled at oblique incidence, and depend on the geometry of the problem and the wave numbers. Nevertheless, a constant surface impedance is found, although with a different value when the observation point lays in the lit or in the shadow region. Then, a UTD solution for the scattering of an obliquely incident plane wave on an electrically large smooth convex coated PEC cylinder is introduced, via a generalization of the canonical circular cylinder problem. The asymptotic solution is uniform because it remains continuous across the transition region, in the vicinity of the shadow boundary, and it recovers the ray optical solution in the deep lit region and the creeping wave formulation within the deep shadow region. When a coating is present a cross-polar field term is excited, which vanishes at normal incidence and in the deep lit region. The limitations of the effective surface impedance formulas are discussed, and the UTD solution is compared with some reference solutions where a very good agreement is met. And in third place, an effective surface impedance approach is introduced for determining surface fields on an electrically large coated metallic circular cylinder. Differences in analysis of rigorouslytreated coated metallic cylinders and cylinders with an IBC are discussed. While for the impedance cylinder case a single constant or uniform surface impedance is considered, for the coated metallic cylinder case two surface impedances are derived. These are associated with the TM and TE creeping wave modes excited on a cylinder and depend on observation and source positions and orientations. With this in mind, a UTD based method with IBC is derived for the surface fields by taking into account the surface impedance variation. The asymptotic expansion is performed, via the Watson transformation, over the appropriate series representation of the Green’s functions, thus avoiding higher-order derivatives of Fock-type integrals, and yielding a fast and an accurate solution. Numerical examples reveal a very good accuracy for large cylinders when the separation between the observation and the source point is large. Thus, this solution could be efficiently applied in mutual coupling analysis, along with the method of moments (MoM), of large conformal microstrip array antennas. The proposed UTD methods for scattered and surface EM field analysis on a coated PEC cylinder with an effective IBC are considered the first steps toward the generalization of a UTD solution for large arbitrarily convex smooth metallic surfaces covered by a material coating and illuminated by an arbitrary EM source.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A UTD solution is developed for describing the scattering by a circular cylinder with an impedance boundary condition (IBC), when it is illuminated by an obliquely incident electromagnetic (EM) plane wave. The solution to this canonical problem will be crucial for the construction of a more general UTD solution valid for an arbitrary smooth convex surface with an IBC, when it is illuminated by an arbitrary EM ray optical field. The canonical solution is uniformly valid across the surface shadow boundary that is tangent to the surface at grazing incidence. This canonical solution contains cross polarized terms in the scattered fields, which arise from a coupling of the TEz and TMz waves at the impedance boundary on the cylinder. Here, z is the cylinder axis. Numerical results show very good accuracy for the simpler and efficient UTD solution, when compared to exact but very slowly convergent eigenfunction solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the scattering analysis of a circular cylindrical structure, the impedance boundary condition (IBC) can approximate and simplify the perfect electric conductor (PEC) boundary condition. The circular cylinder problem can be solved with modal methods but they require a large number of terms when the cylinder radius is large in terms of the wave length. The uniform theory of diffraction (UTD) [1] is commonly used to overcome this issue. The two-dimensional problem of scattering on a circular cylinder covered by a dielectric layer has been analyzed by [2]–[5], but their solutions either do not consider oblique incidence, fail on the transition region or use a constant surface impedance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the thin-film photovoltaic industry, to achieve a high light scattering in one or more of the cell interfaces is one of the strategies that allow an enhancement of light absorption inside the cell and, therefore, a better device behavior and efficiency. Although chemical etching is the standard method to texture surfaces for that scattering improvement, laser light has shown as a new way for texturizing different materials, maintaining a good control of the final topography with a unique, clean, and quite precise process. In this work AZO films with different texture parameters are fabricated. The typical parameters used to characterize them, as the root mean square roughness or the haze factor, are discussed and, for deeper understanding of the scattering mechanisms, the light behavior in the films is simulated using a finite element method code. This method gives information about the light intensity in each point of the system, allowing the precise characterization of the scattering behavior near the film surface, and it can be used as well to calculate a simulated haze factor that can be compared with experimental measurements. A discussion of the validation of the numerical code, based in a comprehensive comparison with experimental data is included.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

p75/AIRM-1 is a recently identified inhibitory receptor expressed by natural killer and myeloid cells displaying high homology with CD33. Crosslinking of p75/AIRM-1 or CD33 has been shown to sharply inhibit the in vitro proliferation of both normal myeloid cells and chronic myeloid leukemias. In this study, we analyzed acute myeloid leukemic cells for the expression of p75/AIRM-1. p75/AIRM-1 marked the M5 (11/12) and M4 (2/2) but not the M1, M2, and M3 subtypes according to the French–American–British classification. Cell samples from 12 acute myeloid leukemias were cultured in the presence of granulocyte/macrophage colony-stimulating factor. Addition to these cultures of anti-CD33 antibody resulted in ≈70% inhibition of cell proliferation as assessed by [3H]thymidine uptake or by the recovery of viable cells. Anti-p75/AIRM-1 antibody exerted a strong inhibitory effect only in two cases characterized by a high in vitro proliferation rate. After crosslinking of CD33 (but not of p75/AIRM-1), leukemic cells bound Annexin V and displayed changes in their light-scattering properties and nucleosomal DNA fragmentation, thus providing evidence for the occurrence of apoptotic cell death. Remarkably, when anti-CD33 antibody was used in combination with concentrations of etoposide insufficient to induce apoptosis when used alone, a synergistic effect could be detected in the induction of leukemic cell death. These studies provide the rationale for new therapeutic approaches in myeloid leukemias by using both chemotherapy and apoptosis-inducing mAbs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have analysed alkenones in 149 surface sediments from the eastern South Atlantic in order to establish a sediment-based calibration of the U37K' paleotemperature index. Our study covers the major tropical to subpolar production systems and sea-surface temperatures (SST's) between 0° and 27°C. In order to define the most suitable calibration for this region, the U37K' values were correlated to seasonal, annual, and production-weighted annual mean atlas temperatures and compared to previously published culture and core-top calibrations. The best linear correlation between U37K' and SST was obtained using annual mean SST from 0 to 10 m water depth (U37K' = 0.033 T + 0.069, r**2 = 0.981). Data scattering increased significantly using temperatures of waters deeper than 20 m, suggesting that U37K' reflects mixed-layer SST and that alkenone production at thermocline depths was not high enough to significantly bias the mixed-layer signal. Regressions based on both production-weighted and on actual annual mean atlas SST were virtually identical, indicating that regional variations in the seasonality of primary production have no discernible effect on the U37K' vs. SST relationship. Comparison with published core-top calibrations from other oceanic regions revealed a high degree of accordance. We, therefore, established a global core-top calibration using U37K' data from 370 sites between 60°S and 60°N in the Atlantic, Indian, and Pacific Oceans and annual mean atlas SST (0-29°C) from 0 m water depth. The resulting relationship (U37K' = 0.033 T + 0.044, r**2 = 958) is identical within error limits to the widely used E. huxleyi calibrations of and attesting their general applicability. The observation that core-top calibrations extending over various biogeographical coccolithophorid zones are strongly linear and in better accordance than culture calibrations suggests that U37K' is less species-dependent than is indicated by culture experiments. The results also suggest that variations in growth rate of algae and nutrient availability do not significantly affect the sedimentary record of U37K' in open ocean environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We extend our Lanczos subspace time-independent wave packet method [J. Chem. Phys. 116 (2002) 2354] to investigate the issue of symmetry contaminations for the challenging deep-well H + O-2 reaction. Our central objective is to address the issue of whether significant symmetry contamination can occur if a wavepacket initially possessing the correct O-O exchange symmetry is propagated over tens of thousands of recursive steps using a basis which does not explicitly enforce the correct symmetry, and if so how seriously this affects the results. We find that symmetry contamination does exist where the symmetry constraint is not explicitly enforced in the basis. While it affects individual resonances and the associated peak amplitudes, the overall shape of the more averaged quantities such as total reaction probabilities and vibrational branching ratios are not seriously affected. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adsorbate molecules scattered in the repulsive field of a surface feature in the form of a semi-cylindrical stripe may be considered as a simple model for a nano-patterned surface. The extent of scattering was conveniently expressed as the tangential momentum accommodation coefficient. An analytical result was obtained using a simple local specular reflection hypothesis in contrast to the more complicated situation of an array of atoms discussed elsewhere, in which screening and secondary reflection may occur (Nicholson and Bhatia 2005). It was also demonstrated that a simple 2D representation leads to the same result for the tangential momentum accommodation coefficient.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We calculate tangential momentum coefficients for the exchange of momentum between molecules in transport and the internal surface of a membrane pore, modelled as a simple atomic structure. We introduce a local specular reflection (LSR) hypothesis, which states that impinging molecules undergo mirror-like reflection in a plane tangent to a surface atom at the point of impact. As a consequence, the components of the velocity, parallel to the direction of flow will (in general) change on impact. The overall effect is a loss of tangential momentum, since more is lost in the upstream direction than is gained in the downstream direction. The loss of tangential momentum is greater when the size ratio of fluid to solid atom is small, allowing more steeply inclined impact planes to become accessible to the fluid phase molecules. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pH and counter-ion response of a microphase separated poly(methyl methacrylate)-block-poly(2-(diethylamino)ethyl methacrylate)-block-poly(methyl methacrylate) hydrogel has been investigated using laser light scattering on an imprinted micron scale topography. A quartz diffraction grating was used to create a micron-sized periodic structure on the surface of a thin film of the polymer and the resulting diffraction pattern used to calculate the swelling ratio of the polymer film in situ. A potentiometric titration and a sequence of counter ion species, taken from the Hofmeister series, have been used to compare the results obtained using this novel technique against small angle X-ray scattering (nanoscopic) and gravimetric studies of bulk gel pieces (macroscopic). For the first time, the technique has been proven to be an inexpensive and effective analytical tool for measuring hydrogel response on the microscopic scale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of ionic strength and of the chemical nature of cations on the protein-protein interactions in ovalbumin solution was studied using small-angle X-ray and neutron scattering (SAXS/SANS). The globular protein ovalbumin is found in dimeric form in solutions as suggested by SANS/SAXS experiments. Due to the negative charge of the proteins at neutral pH, the protein-protein interactions without any salt addition are dominated by electrostatic repulsion. A structure factor related to screened Coulombic interactions together with an ellipsoid form factor was used to fit the scattering intensity. A monovalent salt (NaCl) and a trivalent salt (YCl3) were used to study the effect of the chemical nature of cations on the interaction in protein solutions. Upon addition of NaCl, with ionic strength below that of physiological conditions (150 mM), the effective interactions are still dominated by the surface charge of the proteins and the scattering data can be understood using the same model. When yttrium chloride was used, a reentrant condensation behavior, i.e., aggregation and subsequent redissolution of proteins with increasing salt concentration, was observed. SAXS measurements reveal a transition from effective repulsion to attraction with increasing salt concentration. The solutions in the reentrant regime become unstable after long times (several days). The results are discussed and compared with those from bovine serum albumin (BSA) in solutions.