983 resultados para scale-free rete reti invarianza scala simulazione repast
Resumo:
A select-divide-and-conquer variational method to approximate configuration interaction (CI) is presented. Given an orthonormal set made up of occupied orbitals (Hartree-Fock or similar) and suitable correlation orbitals (natural or localized orbitals), a large N-electron target space S is split into subspaces S0,S1,S2,...,SR. S0, of dimension d0, contains all configurations K with attributes (energy contributions, etc.) above thresholds T0={T0egy, T0etc.}; the CI coefficients in S0 remain always free to vary. S1 accommodates KS with attributes above T1≤T0. An eigenproblem of dimension d0+d1 for S0+S 1 is solved first, after which the last d1 rows and columns are contracted into a single row and column, thus freezing the last d1 CI coefficients hereinafter. The process is repeated with successive Sj(j≥2) chosen so that corresponding CI matrices fit random access memory (RAM). Davidson's eigensolver is used R times. The final energy eigenvalue (lowest or excited one) is always above the corresponding exact eigenvalue in S. Threshold values {Tj;j=0, 1, 2,...,R} regulate accuracy; for large-dimensional S, high accuracy requires S 0+S1 to be solved outside RAM. From there on, however, usually a few Davidson iterations in RAM are needed for each step, so that Hamiltonian matrix-element evaluation becomes rate determining. One μhartree accuracy is achieved for an eigenproblem of order 24 × 106, involving 1.2 × 1012 nonzero matrix elements, and 8.4×109 Slater determinants
Resumo:
The development of susceptibility maps for debris flows is of primary importance due to population pressure in hazardous zones. However, hazard assessment by processbased modelling at a regional scale is difficult due to the complex nature of the phenomenon, the variability of local controlling factors, and the uncertainty in modelling parameters. A regional assessment must consider a simplified approach that is not highly parameter dependant and that can provide zonation with minimum data requirements. A distributed empirical model has thus been developed for regional susceptibility assessments using essentially a digital elevation model (DEM). The model is called Flow-R for Flow path assessment of gravitational hazards at a Regional scale (available free of charge under www.flow-r.org) and has been successfully applied to different case studies in various countries with variable data quality. It provides a substantial basis for a preliminary susceptibility assessment at a regional scale. The model was also found relevant to assess other natural hazards such as rockfall, snow avalanches and floods. The model allows for automatic source area delineation, given user criteria, and for the assessment of the propagation extent based on various spreading algorithms and simple frictional laws.We developed a new spreading algorithm, an improved version of Holmgren's direction algorithm, that is less sensitive to small variations of the DEM and that is avoiding over-channelization, and so produces more realistic extents. The choices of the datasets and the algorithms are open to the user, which makes it compliant for various applications and dataset availability. Amongst the possible datasets, the DEM is the only one that is really needed for both the source area delineation and the propagation assessment; its quality is of major importance for the results accuracy. We consider a 10m DEM resolution as a good compromise between processing time and quality of results. However, valuable results have still been obtained on the basis of lower quality DEMs with 25m resolution.
Resumo:
OBJECTIVES: To evaluate morbidity associated with the radial forearm free flap donor site and to compare functional and aesthetic outcomes of ulnar-based transposition flap (UBTF) vs split-thickness skin graft (STSG) closure of the donor site.¦DESIGN: Case-control study.¦SETTING: Tertiary care institution.¦PATIENTS: The inclusion criteria were flap size not exceeding 30 cm(2), patient availability for a single follow-up visit, and performance of surgery at least 6 months previously. Forty-four patients were included in the study and were reviewed. Twenty-two patients had UBTF closure, and 22 had STSG closure.¦MAIN OUTCOME MEASURES: Variables analyzed included wrist mobility, Michigan Hand Outcomes Questionnaire scores, pinch and grip strength (using a dynamometer), and hand sensitivity (using monofilament testing over the radial nerve distribution). In analyses of operated arms vs nonoperated arms, variables obtained only for the operated arms included Vancouver Scar Scale scores and visual analog scale scores for Aesthetics and Overall Arm Function.¦RESULTS: The mean (SD) wrist extension was significantly better in the UBTF group (56.0° [10.4°] for nonoperated arms and 62.0° [9.7°] for operated arms) than in the STSG group (59.0° [7.1°] for nonoperated arms and 58.4° [12.1°] for operated arms) (P = .02). The improvement in wrist range of motion for the UBTF group approached statistical significance (P = .07). All other variables (Michigan Hand Outcomes Questionnaire scores, pinch and grip strength, hand sensitivity, and visual analog scale scores) were significantly better for nonoperated arms vs operated arms, but no significant differences were observed between the UBTF and STSG groups.¦CONCLUSIONS: The radial forearm free flap donor site carries significant morbidity. Donor site UBTF closure was associated with improved wrist extension and represents an alternative method of closure for small donor site defects.
Resumo:
The agricultural potential is generally assessed and managed based on a one-dimensional vision of the soil profile, however, the increased appreciation of sustainable production has stimulated studies on faster and more accurate evaluation techniques and methods of the agricultural potential on detailed scales. The objective of this study was to investigate the possibility of using soil magnetic susceptibility for the identification of landscape segments on a detailed scale in the region of Jaboticabal, São Paulo State. The studied area has two slope curvatures: linear and concave, subdivided into three landscape segments: upper slope (US, concave), middle slope (MS, linear) and lower slope (LS, linear). In each of these segments, 20 points were randomly sampled from a database with 207 samples forming a regular grid installed in each landscape segment. The soil physical and chemical properties, CO2 emissions (FCO2) and magnetic susceptibility (MS) of the samples were evaluated represented by: magnetic susceptibility of air-dried fine earth (MS ADFE), magnetic susceptibility of the total sand fraction (MS TS) and magnetic susceptibility of the clay fraction (MS Cl) in the 0.00 - 0.15 m layer. The principal component analysis showed that MS is an important property that can be used to identify landscape segments, because the correlation of this property within the first principal component was high. The hierarchical cluster analysis method identified two groups based on the variables selected by principal component analysis; of the six selected variables, three were related to magnetic susceptibility. The landscape segments were differentiated similarly by the principal component analysis and by the cluster analysis using only the properties with higher discriminatory power. The cluster analysis of MS ADFE, MS TS and MS Cl allowed the formation of three groups that agree with the segment division established in the field. The grouping by cluster analysis indicated MS as a tool that could facilitate the identification of landscape segments and enable the mapping of more homogeneous areas at similar locations.
Resumo:
Atraumatic osteonecrosis of the talus can be extremely painful and lead to significant functional impairment. Although clinical, radiographic, and demographic characteristics of atraumatic osteonecrosis of the talus have been well documented, the diagnosis is frequently missed or delayed; the most common causes are use of corticosteroids and the presence of immune disorders. Operative treatment of large osteochondral lesions of the talus is difficult because the blood supply is poor in the talar dome. Microvascular reconstruction of the talar dome with iliac crest autografts is a complex but functionally excellent therapeutic option. We present a 48-year-old man, who developed an extensive atraumatic avascular necrosis of the talar dome without collapse. Except for insulin dependent diabetes mellitus no further comorbidities were known. A microvascular iliac crest bone flap was inserted into the talus. A follow-up 16 years postoperatively showed a clinically as well as radiographically stable reconstruction of the talar dome and an excellent mobility of the ankle joint. The AOFAS hindfoot scale had improved from initially 33 points to 100 on the last follow-up. Free microvascular bony reconstruction of the talar dome should not only be considered in younger patients but also for middle aged active patients, since our follow-up shows an excellent long term result. Early reconstruction can prevent collapse of the talar bone.
Resumo:
OBJECTIVE: Our objective was to compare two state-of-the-art coronary MRI (CMRI) sequences with regard to image quality and diagnostic accuracy for the detection of coronary artery disease (CAD). SUBJECTS AND METHODS: Twenty patients with known CAD were examined with a navigator-gated and corrected free-breathing 3D segmented gradient-echo (turbo field-echo) CMRI sequence and a steady-state free precession sequence (balanced turbo field-echo). CMRI was performed in a transverse plane for the left coronary artery and a double-oblique plane for the right coronary artery system. Subjective image quality (1- to 4-point scale, with 1 indicating excellent quality) and objective image quality parameters were independently determined for both sequences. Sensitivity, specificity, and accuracy for the detection of significant (> or = 50% diameter) coronary artery stenoses were determined as defined in invasive catheter X-ray coronary angiography. RESULTS: Subjective image quality was superior for the balanced turbo field-echo approach (1.8 +/- 0.9 vs 2.3 +/- 1.0 for turbo field-echo; p < 0.001). Vessel sharpness, signal-to-noise ratio, and contrast-to-noise ratio were all superior for the balanced turbo field-echo approach (p < 0.01 for signal-to-noise ratio and contrast-to-noise ratio). Of the 103 segments, 18% of turbo field-echo segments and 9% of balanced turbo field-echo segments had to be excluded from disease evaluation because of insufficient image quality. Sensitivity, specificity, and accuracy for the detection of significant coronary artery stenoses in the evaluated segments were 92%, 67%, 85%, respectively, for turbo field-echo and 82%, 82%, 81%, respectively, for balanced turbo field-echo. CONCLUSION: Balanced turbo field-echo offers improved image quality with significantly fewer nondiagnostic segments when compared with turbo field-echo. For the detection of CAD, both sequences showed comparable accuracy for the visualized segments.
Resumo:
Two cost-efficient genome-scale methodologies to assess DNA-methylation are MethylCap-seq and Illumina's Infinium HumanMethylation450 BeadChips (HM450). Objective information regarding the best-suited methodology for a specific research question is scant. Therefore, we performed a large-scale evaluation on a set of 70 brain tissue samples, i.e. 65 glioblastoma and 5 non-tumoral tissues. As MethylCap-seq coverages were limited, we focused on the inherent capacity of the methodology to detect methylated loci rather than a quantitative analysis. MethylCap-seq and HM450 data were dichotomized and performances were compared using a gold standard free Bayesian modelling procedure. While conditional specificity was adequate for both approaches, conditional sensitivity was systematically higher for HM450. In addition, genome-wide characteristics were compared, revealing that HM450 probes identified substantially fewer regions compared to MethylCap-seq. Although results indicated that the latter method can detect more potentially relevant DNA-methylation, this did not translate into the discovery of more differentially methylated loci between tumours and controls compared to HM450. Our results therefore indicate that both methodologies are complementary, with a higher sensitivity for HM450 and a far larger genome-wide coverage for MethylCap-seq, but also that a more comprehensive character does not automatically imply more significant results in biomarker studies.
Resumo:
The six most important cost-effective policies on tobacco control can be measured by the Tobacco Control Scale (TCS). The objective of our study was to describe the correlation between the TCS and smoking prevalence, self-reported exposure to secondhand smoke (SHS) and attitudes towards smoking restrictions in the 27 countries of the European Union (EU27).
Resumo:
Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Successful scale-up of human embryonic stem cell production in a stirred microcarrier culture system
Resumo:
Future clinical applications of human embryonic stem (hES) cells will require high-yield culture protocols. Currently, hES cells are mainly cultured in static tissue plates, which offer a limited surface and require repeated sub-culturing. Here we describe a stirred system with commercial dextran-based microcarriers coated with denatured collagen to scale-up hES cell production. Maintenance of pluripotency in the microcarrier-based stirred system was shown by immunocytochemical and flow cytometry analyses for pluripotency-associated markers. The formation of cavitated embryoid bodies expressing markers of endoderm, ectoderm and mesoderm was further evidence of maintenance of differentiation capability. Cell yield per volume of medium spent was more than 2-fold higher than in static plates, resulting in a significant decrease in cultivation costs. A total of 10(8) karyotypically stable hES cells were obtained from a unitary small vessel that needed virtually no manipulation during cell proliferation, decreasing risks of contamination. Spinner flasks are available up to working volumes in the range of several liters. If desired, samples from the homogenous suspension can be withdrawn to allow process validation needed in the last expansion steps prior to transplantation. Especially when thinking about clinical trials involving from dozens to hundreds of patients, the use of a small number of larger spinners instead of hundreds of plates or flasks will be beneficial. To our knowledge, this is the first description of successful scale-up of feeder- and Matrigel™-free production of undifferentiated hES cells under continuous agitation, which makes this system a promising alternative for both therapy and research needs.
Resumo:
The influence of aging on memory has been extensively studied, but the importance of short-term memory and recall sequence has not. The objective of the current study was to examine the recall order of words presented on lists and to determine if age affects recall sequence. Physically and psychologically healthy male subjects were divided into two groups according to age, i.e., 23 young subjects (20 to 30 years) and 50 elderly subjects (60 to 70 years) submitted to the Wechsler Adult Intelligence Scale-Revised and the free word recall test. The order of word presentation significantly affected the 3rd and 4th words recalled (P < 0.01; F = 14.6). In addition, there was interaction between the presentation order and the type of list presented (P < 0.05; F = 9.7). Also, both groups recalled the last words presented from each list (words 13-15) significantly more times 3rd and 4th than words presented in all remaining positions (P < 0.01). The order of word presentation also significantly affected the 5th and 6th words recalled (P = 0.05; F = 7.5) and there was a significant interaction between the order of presentation and the type of list presented (P < 0.01; F = 20.8). The more developed the cognitive functions, resulting mainly from formal education, the greater the cognitive reserve, helping to minimize the effects of aging on the long-term memory (episodic declarative).
Resumo:
Brazil is the second biggest worldwide producer of cookies and there are many varieties in the market; however, only a few are gluten-free. The objectives of this work were to formulate two gluten-free cookies added with iron, peanut or almond, and analyze their physicochemical, chromatic and sensory properties. Moisture, instrumental color (L*, a*, b* and C*), ash, proteins, lipids, iron, carbohydrates (estimated by difference), and water activity were determined. The acceptance of the products was assessed by 115 untrained taste panelists using a five-point hedonic scale. The data collected from the physicochemical analyses were submitted to Levene's, ANOVA, and Tukey's tests, which showed statistical difference (p < 0.05) in all the attributes for centesimal composition, water activity, and color of the cookies. Peanut and almond cookies could be considered sources of iron once they presented at least 15% of the daily recommended value of intake. They also garnered acceptance indexes of 80 and 85%, respectively, concluding that both formulations developed in this study were source of iron and contained high concentration of lipids and proteins with great sensory acceptance, suggesting their potential consumption by gluten-intolerants.
Resumo:
Two flavors of cookies were developed (savory and peppery) containing a mixture of plants such as "guaraná" (Paullinia cupana) and "catuaba" (Anemopaegma mirandum). A test of acceptance and buying intention was applied to 48 consumers through a structured hedonic scale of 9 points. Afterwards, the centesimal compositions of these cookies were obtained as well as their total contents of copper, iron, and zinc through the method of atomic absorption spectrometry with flame. Sensorial tests indicated that the cookies presented good acceptance with potential to sensorial growth. The amount of fibers in the samples, 3 g/100 g, surpassed expectations since the product was not invented with the intention of being a source of this nutrient. The total amount of copper (0.41 mg.100 g-1), iron (4.50 mg.100 g-1), and zinc (1.32 mg.100 g-1) was considered good. The cookies produced can be considered good sources of fibers, copper, iron, and zinc. Furthermore, they are beneficial to people affected by celiac disease because they lack gluten. They also present functional properties. In addition, the medicinal plants used are considered energetic.
Resumo:
The aim of this study was to determine the physical and microbiological characteristics of extruded broken beans flour, in addition to developing mixtures for gluten-free cake with these flours, evaluating their technological and sensory quality. Gluten-free formulations were prepared with 45%, 60% and 75% of extruded broken beans. All analyzes of the flours and mixtures for cakes were performed according to standard techniques found in the literature. Sensory analyzes of cakes applied the 9-point structured hedonic scale. Results were submitted to variance analysis and comparison of means test (Tukey, p<0.05). The use of extruded broken beans improved the water absorbed and water solubility index of the mixtures for gluten-free cake, and for the lower viscosity and retrogradation when compared to the standard formulation. All cakes were accepted (rate ≥ 7) for all the analyzed attributes. From the technological and sensory standpoints, the development of gluten-free cake mixtures is feasible with up to 75% of extruded broken beans.
Resumo:
In now-a-days semiconductor and MEMS technologies the photolithography is the working horse for fabrication of functional devices. The conventional way (so called Top-Down approach) of microstructuring starts with photolithography, followed by patterning the structures using etching, especially dry etching. The requirements for smaller and hence faster devices lead to decrease of the feature size to the range of several nanometers. However, the production of devices in this scale range needs photolithography equipment, which must overcome the diffraction limit. Therefore, new photolithography techniques have been recently developed, but they are rather expensive and restricted to plane surfaces. Recently a new route has been presented - so-called Bottom-Up approach - where from a single atom or a molecule it is possible to obtain functional devices. This creates new field - Nanotechnology - where one speaks about structures with dimensions 1 - 100 nm, and which has the possibility to replace the conventional photolithography concerning its integral part - the self-assembly. However, this technique requires additional and special equipment and therefore is not yet widely applicable. This work presents a general scheme for the fabrication of silicon and silicon dioxide structures with lateral dimensions of less than 100 nm that avoids high-resolution photolithography processes. For the self-aligned formation of extremely small openings in silicon dioxide layers at in depth sharpened surface structures, the angle dependent etching rate distribution of silicon dioxide against plasma etching with a fluorocarbon gas (CHF3) was exploited. Subsequent anisotropic plasma etching of the silicon substrate material through the perforated silicon dioxide masking layer results in high aspect ratio trenches of approximately the same lateral dimensions. The latter can be reduced and precisely adjusted between 0 and 200 nm by thermal oxidation of the silicon structures owing to the volume expansion of silicon during the oxidation. On the basis of this a technology for the fabrication of SNOM calibration standards is presented. Additionally so-formed trenches were used as a template for CVD deposition of diamond resulting in high aspect ratio diamond knife. A lithography-free method for production of periodic and nonperiodic surface structures using the angular dependence of the etching rate is also presented. It combines the self-assembly of masking particles with the conventional plasma etching techniques known from microelectromechanical system technology. The method is generally applicable to bulk as well as layered materials. In this work, layers of glass spheres of different diameters were assembled on the sample surface forming a mask against plasma etching. Silicon surface structures with periodicity of 500 nm and feature dimensions of 20 nm were produced in this way. Thermal oxidation of the so structured silicon substrate offers the capability to vary the fill factor of the periodic structure owing to the volume expansion during oxidation but also to define silicon dioxide surface structures by selective plasma etching. Similar structures can be simply obtained by structuring silicon dioxide layers on silicon. The method offers a simple route for bridging the Nano- and Microtechnology and moreover, an uncomplicated way for photonic crystal fabrication.