892 resultados para salicylic acid methyl ester
Resumo:
Bacteria play an important role in many ecological systems. The molecular characterization of bacteria using either cultivation-dependent or cultivation-independent methods reveals the large scale of bacterial diversity in natural communities, and the vastness of subpopulations within a species or genus. Understanding how bacterial diversity varies across different environments and also within populations should provide insights into many important questions of bacterial evolution and population dynamics. This thesis presents novel statistical methods for analyzing bacterial diversity using widely employed molecular fingerprinting techniques. The first objective of this thesis was to develop Bayesian clustering models to identify bacterial population structures. Bacterial isolates were identified using multilous sequence typing (MLST), and Bayesian clustering models were used to explore the evolutionary relationships among isolates. Our method involves the inference of genetic population structures via an unsupervised clustering framework where the dependence between loci is represented using graphical models. The population dynamics that generate such a population stratification were investigated using a stochastic model, in which homologous recombination between subpopulations can be quantified within a gene flow network. The second part of the thesis focuses on cluster analysis of community compositional data produced by two different cultivation-independent analyses: terminal restriction fragment length polymorphism (T-RFLP) analysis, and fatty acid methyl ester (FAME) analysis. The cluster analysis aims to group bacterial communities that are similar in composition, which is an important step for understanding the overall influences of environmental and ecological perturbations on bacterial diversity. A common feature of T-RFLP and FAME data is zero-inflation, which indicates that the observation of a zero value is much more frequent than would be expected, for example, from a Poisson distribution in the discrete case, or a Gaussian distribution in the continuous case. We provided two strategies for modeling zero-inflation in the clustering framework, which were validated by both synthetic and empirical complex data sets. We show in the thesis that our model that takes into account dependencies between loci in MLST data can produce better clustering results than those methods which assume independent loci. Furthermore, computer algorithms that are efficient in analyzing large scale data were adopted for meeting the increasing computational need. Our method that detects homologous recombination in subpopulations may provide a theoretical criterion for defining bacterial species. The clustering of bacterial community data include T-RFLP and FAME provides an initial effort for discovering the evolutionary dynamics that structure and maintain bacterial diversity in the natural environment.
Resumo:
A new class of heterocycles pyrrolyl thiadiazoles, pyrrolyl oxadiazoles and pyrrolyl triazoles were prepared from arylsulfonylethenesulfonylacetic acid methyl ester and tested for their antimicrobial and cytotoxic activities. (C) 2008 Elsevier Masson SAS. All rights reserved.
Resumo:
The diketopyrrolopyrrole-based copolymers PDPP-BBT and TDPP-BBT were synthesized and used as donor for bulk heterojunction photovoltaic devices. The photophysical properties of these polymers showed absorption in the range 500-600 nm with a maximum peak around 563 nm, while TDPP-BBT showed broadband absorption in the range 620 - 800 nm with a peak around 656 nm. The power conversion efficiencies (PCE) of the polymer solar cells based on these copolymers and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) were 0.68% (as cast PDPP-BBT:PCBM), 1.51% (annealed PDPP-BBT:PCBM), 1.57% (as cast TDPPBBT: PCBM), and 2.78% (annealed TDPP-BBT:PCBM), under illumination of AM 1.5 (100 mW/cm2). The higher PCE for TDPP-BBT-based polymer solar cells has been attributed to the low band gap of this copolymer as compared to PDPP-BBT, which increases the numbers of photogenerated excitons and corresponding photocurrent of the device. These results indicate that PDPP-BBT and TDPP-BBT act as excellent electron donors for bulk heterojunction devices.
Resumo:
The spectral photocurrent characteristics of two donor-acceptor diketopyrrolopyrrole (DPP)-based copolymers (PDPP-BBT and TDPP-BBT) blended with a fullerene derivative [6,6]-phenyl C-61-butyric acid methyl ester (PCBM) were studied using Fourier-transform photocurrent spectroscopy (FTPS) and monochromatic photocurrent (PC) method. PDPP-BBT: PCBM shows the onset of the lowest charge transfer complex (CTC) state at 1.42 eV, whereas TDPP-BBT: PCBM shows no evidence of the formation of a midgap CTC state. The FTPS and PC spectra of P3HT:PCBM are also compared. The larger singlet state energy difference of TDPP-BBT and PCBM compared to PDPP-BBT/P3HT and PCBM obliterates the formation of a midgap CTC state resulting in an enhanced photovoltaic efficiency over PDPP-BBT: PCBM. (C) 2011 American Institute of Physics. [doi:10.1063/1.3670043]
Resumo:
Solar cells on thin conformable substrates require conventional plastics such asPS and PMMA that provide better mechanical and environmental stability with cost reduction. We can also tune charge transfer between PPV derivatives and fullerene derivatives via morphology control of the plastics in the solar cells. Our group has conducted morphology evolution studies in nano- and microscale light emitting domains in poly (2-methoxy, 5-(2'-ethyl-hexyloxy)-p-phenylenevinylene) (MEH-PPV) and poly (methyl methacrylate) (PMMA) blends. Our current research has been focused on tricomponent-photoactive solar cells which comprise MEH-PPV, PMMA, and [6,6]-phenyl C61-butyric acid methyl ester (PCBM, Figure 1) in the photoactive layer. Morphology control of the photoactive materials and fine tuning of photovoltaic properties for the solar cells are our primary interest. Similar work has been done by the Sariciftci research group. Additionally, a study on inter- and intramolecular photoinduced charge transfer using MEH-PPV derivatives that have different conjugation lengths (Figure 1, n=1 and 0.85) has been performed.
Resumo:
Alternating copolymer of 7,9-di(thiophen-2-yl)-8H-cyclopenta[a]acenaphthylen-8-one-co-benzothia diazole was synthesized by palladium(0) catalyzed Stille coupling reaction. This solution processable copolymer shows an excellent thermal stability and has a broad absorption range from 300 to 800 nm with a band gap of about 1.51 eV. High LUMO energy level and low band gap of the synthesized copolymers suggest that, this copolymer will be a suitable donor material for use in an organic photovoltaic device. Photovoltaic devices were fabricated from the blend of copolymer and phenyl-C61-butyric acid methyl ester as the active material. (C) 2011 Elsevier By. All rights reserved.
Resumo:
Novel random copolymers containing dithienylcyclopentadienone, thiophene and benzothiadiazole were synthesized and photovoltaic properties of these materials were evaluated. Thermal, structural, optical and electrochemical characterization of the synthesized copolymers was carried out. These thermally stable copolymers are solution processable unlike the homopolymer. The absorption spectra indicated that with the incorporation of alkyl chains in the thiophene moiety, the onset of absorption increases and hence band gap decreases (1.47 eV to 1.41 eV). Bulk heterojunction solar cells were fabricated with the blend of copolymer and phenyl-C61-butyric acid methyl ester (PCBM) as the active material and device parameters were extracted. The copolymer consists of alkyl thiophene exhibit higher open circuit voltage than the copolymer consisting of thiophene moiety. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
In this work, we have prepared two donor-acceptor-donor (D-A-D) pi-conjugated oligomers to investigate the effect of phase separation on the performance of bulk heterojunction (BHJ) solar cells. These charge transfer low band gap pi-conjugated oligomers (TTB and NMeTTB) were synthesized by Knoevenagel condensation of terthiophenecarbaldehyde and barbiturate appended pyran derivative. The thin film morphology of both the oligomers and along with electron acceptor 6,6]-phenyl-C60-butyric acid methyl ester (PC61BM) was investigated by atomic force microscopy (AFM) and transmission electron microscopy (TEM). The blend of NMeTTB and PC61BM thin film yield highly ordered thin film, whereas there was clear phase separation between TTB and PC61BM in thin film. The BHJ solar cell was fabricated using a blend of NMeTTB and TTB with PC61BM acceptor in 1:1 ratio as active layer, and a power conversion efficiency of 1.8% was obtained. This device characteristic was compared with device having TTB:PC61BM as active layer, and large difference is observed in photocurrents. This poor performance of TTB in BHJ devices was attributed to the difference in the nanoscale morphology of the corresponding derivatives. We rationalize our findings based on the low charge carrier mobility in organic field-effect transistors and miscibility/phase separation parameter of binary components (oligomers and PC61BM) in the active layer of bulk heterojunction solar cells.
Resumo:
Most charge generation studies on organic solar cells focus on the conventional mode of photocurrent generation derived from light absorption in the electron donor component (so called channel I). In contrast, relatively little attention has been paid to the alternate generation pathway: light absorption in the electron acceptor followed by photo-induced hole transfer (channel II). By using the narrow optical gap polymer poly(3,6-dithieno3,2-b] thiophen-2-yl)-2,5-bis(2-octyldodecyl)-pyrrolo- 3,4-c]pyrrole-1,4-dione-5',5 `'-diyl-alt-4,8-bis(dodecyloxy) benzo1,2-b:4,5-b'] dithiophene-2,6-diyl with two complimentary fullerene absorbers; phenyl-C-61-butyric acid methyl ester, and phenyl-C-71-butyric acid methyl ester (70-PCBM), we have been able to quantify the photocurrent generated each of the mechanisms and find a significant fraction (>30%), which is derived in particular from 70-PCBM light absorption.
Resumo:
Algae biofuel have emerged as viable renewable energy sources and are the potential alternatives to fossil-based fuels in recent times. Algae have the potential to generate significant quantities of commercially viable biofuel apart from treating wastewater. Three algal species, viz. Chlorococcum sp., Microcystis sp. and Phormidium sp. proliferating in wastewater ponds were isolated and cultured in the laboratory myxotrophically under similar wastewater conditions. Chlorococcum sp. attained a mean biomass productivity of 0.09 g. I(-1)d(-1) with the maximum `biomass density of 1.33 g I-1 and comparatively higher lipid content of 30.55% (w/w) on the ninth day of the culture experiment. Under similar conditions Microcystis sp. and Phormidium sp. attained mean biomass productivities of 0.058 and 0.063 g I-1 d(-1) with a total lipid content of 8.88% and 18.66% respectively. Biochemical composition (carbohydrates, proteins, lipids and phosphates) variations and lipid accumulation studies were performed by comparison of the ratios of carbohydrate to protein; lipid to protein (L/P) and lipid to phosphates using attenuated total reflectance-Fourier transform infrared spectroscopy which showed higher L/P ratio during the stationary phase of algal growth. Composition analysis of fatty acid methyl ester has been performed using gas chromatography and mass spectrometry. Chlorococcum sp. with higher productivity and faster growth rate has higher lipid content with about 67% of saturated fatty acid dominated by palmitate (36.3%) followed by an unsaturate as linoleate (14%) and has proved to be an economical and viable feedstock for biofuel production compared to the other wastewater-grown species.
Resumo:
An alternating copolymer containing dithienylcyclopentadienone, thiophene and benzothiadiazole was synthesized by palladium (0) catalyzed Stille coupling reaction. Structural characterization of the synthesized alternating copolymer was carried out by NMR and FTIR spectroscopy. This solution processable copolymer shows an excellent thermal stability and has a broad absorption range from 300-800 nm. High LUMO energy level and low band gap of the synthesized copolymers suggest that, this copolymer will be a better donor material for application in organic photovoltaics. Particle size analysis and molecular weight determination of the synthesized copolymer through dynamic light scattering experiment indicates that, high molecular weight copolymer was obtained by this polymerization route. Photovoltaic devices were fabricated from the blend of copolymer and phenyl-C61- butyric acid methyl ester as the active material. Fabricated photovoltaic device results show that this alternating copolymer is a promising candidate for use in organic photovoltaics.
Resumo:
Current organic semiconductors for organic photovoltaics (OPV) have relative dielectric constants (relative permittivities, epsilon(r)) in the range of 2-4. As a consequence, Coulombically bound electron-hole pairs (excitons) are produced upon absorption of light, giving rise to limited power conversion efficiencies. We introduce a strategy to enhance epsilon(r) of well-known donors and acceptors without breaking conjugation, degrading charge carrier mobility or altering the transport gap. The ability of ethylene glycol (EG) repeating units to rapidly reorient their dipoles with the charge redistributions in the environment was proven via density functional theory (DFT) calculations. Fullerene derivatives functionalized with triethylene glycol side chains were studied for the enhancement of epsilon(r) together with poly(p-phenylene vinylene) and diketo-pyrrolopyrrole based polymers functionalized with similar side chains. The polymers showed a doubling of epsilon(r) with respect to their reference polymers in identical backbone. Fullerene derivatives presented enhancements up to 6 compared with phenyl-C-61-butyric acid methyl ester (PCBM) as the reference. Importantly, the applied modifications did not affect the mobility of electrons and holes and provided excellent solubility in common organic solvents.
Resumo:
This paper reports on the synthesis of zinc oxide (ZnO) nanostructures and examines the performance of nanocomposite thin-film transistors (TFTs) fabricated using ZnO dispersed in both n- and p-type polymer host matrices. The ZnO nanostructures considered here comprise nanowires and tetrapods and were synthesized using vapor phase deposition techniques involving the carbothermal reduction of solid-phase zinc-containing compounds. Measurement results of nanocomposite TFTs based on dispersion of ZnO nanorods in an n-type organic semiconductor ([6, 6]-phenyl-C61-butyric acid methyl ester) show electron field-effect mobilities in the range 0.3-0.6 cm2V-1 s-1. representing an approximate enhancement by as much as a factor of 40 from the pristine state. The on/off current ratio of the nanocomposite TFTs approach 106 at saturation with off-currents on the order of 10 pA. The results presented here, although preliminary, show a highly promising enhancement for realization of high-performance solution-processable n-type organic TFTs. © 2008 IEEE.
Resumo:
The performance of polymer-fullerene bulk heterojunction (BHJ) solar cells is strongly dependent on the vertical distribution of the donor and acceptor regions within the BHJ layer. In this work, we investigate in detail the effect of the hole transport layer (HTL) physical properties and the thermal annealing on the BHJ morphology and the solar cell performance. For this purpose, we have prepared solar cells with four distinct formulations of poly(3,4- ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) buffer layers. The samples were subjected to thermal annealing, applied either before (pre-annealing) or after (post-annealing) the cathode metal deposition. The effect of the HTL and the annealing process on the BHJ ingredient distribution - namely, poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) - has been studied by spectroscopic ellipsometry and atomic force microscopy. The results revealed P3HT segregation at the top region of the films, which had a detrimental effect on all pre-annealed devices, whereas PCBM was found to accumulate at the bottom interface. This demixing process depends on the PEDOT:PSS surface energy; the more hydrophilic the surface the more profound is the vertical phase separation within the BHJ. At the same time those samples suffer from high recombination losses as evident from the analysis of the J-V measurements obtained in the dark. Our results underline the significant effect of the HTL-active and active-ETL (electron transport layer) interfacial composition that should be taken into account during the optimization of all polymer-fullerene solar cells. © 2012 The Royal Society of Chemistry.
Resumo:
The dithiophene donor-acceptor copolymers that are bridged either with carbon (C-PCPDTBT) or silicon atoms (Si-PCPDTBT) belong to a promising family of materials for use in photoactive layers for organic photovoltaic cells (OPVs). In this work, we implement the non-destructive Spectroscopic Ellipsometry technique in the near infrared to the far ultraviolet spectral region in combination with advanced theoretical modeling to investigate the vertical distribution of the C-PCPDTBT and Si-PCPDTBT polymer and fullerene ([6,6]-phenyl C71-butyric acid methyl ester - PC70BM) phases in the blend, as well as the effect of the polymer-to-fullerene ratio on the distribution mechanism. It was found that the C-PCPDTBT:PC70BM blends have donor-enriched top regions and acceptor-enriched bottom regions, whereas the donor and acceptor phases are more homogeneously intermixed in the Si-PCPDTBT:PC70BM blends. We suggest that the chemical incompatibility of the two phases as expressed by the difference in their surface energy, may be a key element in promoting the segregation of the lower surface phase to the top region of the photoactive layer. We found that the increase of the photoactive layer thickness reduces the polymer enrichment at the cathode, producing a more homogeneous phase distribution of donor and acceptor in the bulk that leads to the increase of the OPV efficiency. © 2014 Elsevier B.V.