496 resultados para ribbon synapse
Resumo:
In the last years, the classical view of glial cells (in particular of astrocytes) as a simple supportive cell for neurons has been replaced by a new vision in which glial cells are active elements of the brain. Such a new vision is based on the existence of a bidirectional communication between astrocytes and neurons at synaptic level. Indeed, perisynaptic processes of astrocytes express active G-protein-coupled receptors that are able (1) to sense neurotransmitters released from the synapse during synaptic activity, (2) to increase cytosolic levels of calcium, and (3) to stimulate the release of gliotransmitters that in turn can interact with the synaptic elements. The mechanism(s) by which astrocytes can release gliotransmitter has been extensively studied during the last years. Many evidences have suggested that a fraction of astrocytes in situ release neuroactive substances both with calcium-dependent and calcium-independent mechanism(s); whether these mechanisms coexist and under what physiological or pathological conditions they occur, it remains unclear. However, the calcium-dependent exocytotic vesicular release has received considerable attention due to its potential to occur under physiological conditions via a finely regulated way. By releasing gliotransmitters in millisecond time scale with a specific vesicular apparatus, astrocytes can integrate and process synaptic information and control or modulate synaptic transmission and plasticity.
Resumo:
The pituitary adenylate cyclase activating polypeptide (PACAP) type I receptor (PAC1) is a G-protein-coupled receptor binding the strongly conserved neuropeptide PACAP with 1000-fold higher affinity than the related peptide vasoactive intestinal peptide. PAC1-mediated signaling has been implicated in neuronal differentiation and synaptic plasticity. To gain further insight into the biological significance of PAC1-mediated signaling in vivo, we generated two different mutant mouse strains, harboring either a complete or a forebrain-specific inactivation of PAC1. Mutants from both strains show a deficit in contextual fear conditioning, a hippocampus-dependent associative learning paradigm. In sharp contrast, amygdala-dependent cued fear conditioning remains intact. Interestingly, no deficits in other hippocampus-dependent tasks modeling declarative learning such as the Morris water maze or the social transmission of food preference are observed. At the cellular level, the deficit in hippocampus-dependent associative learning is accompanied by an impairment of mossy fiber long-term potentiation (LTP). Because the hippocampal expression of PAC1 is restricted to mossy fiber terminals, we conclude that presynaptic PAC1-mediated signaling at the mossy fiber synapse is involved in both LTP and hippocampus-dependent associative learning.
Resumo:
SUMMARYAstrocytes represent the largest cell population in the human brain. In addition to a well established role as metabolic support for neuronal activity, in the last years these cells have been found to accomplish other important and, sometimes, unexpected functions. The tight enwrapping of synapses by astrocytic processes and the predominant expression of glutamate uptake carriers in the astrocytic rather than neuronal plasma membranes brought to the definition of a critical involvement of astrocytes in the clearance of glutamate from synaptic junctions. Moreover, several publications showed that astrocytes are able to release chemical transmitters (gliotransmitters) suggesting their active implication in the control of synaptic functions. Among gliotransmitters, the best characterized is glutamate, which has been proposed to be released from astrocytes in a Ca2+ dependent manner via exocytosis of synaptic-like microvesicles.In my thesis I present results leading to substantial advancement of the understanding of the mechanisms by which astrocytes modulate synaptic activity in the hippocampus, notably at excitatory synapses on dentate granule cells. I show that tumor necrosis factor- alpha (TNFa), a molecule that is generally involved in immune system functions, critically controls astrocyte-to-synapse communication (gliotransmission) in the brain. With constitutive levels of TNFa present, activation of purinergic G protein-coupled receptors in astrocytes, called P2Y1 receptors, induces localized intracellular calcium ([Ca2+]j) elevation in astrocytic processes (measured by two-photon microscopy) followed by glutamate release and activation of pre-synaptic NMDA receptors resulting in synaptic potentiation. In preparations lacking TNFa, astrocytes respond with identical [Ca2+]i elevations but fail to induce neuromodulation. I find that TNFa specifically controls the glutamate release step of gliotransmission. Addition of very low (picomolar) TNFa concentrations to preparations lacking the cytokine, promptly reconstitutes both normal exocytosis in cultured astrocytes and gliotransmission in hippocampal slices. These data provide the first demonstration that gliotransmission and its synaptic effects are controlled not only by astrocyte [Ca2+]i elevations but also by permissive/homeostatic factors like TNFa.In addition, I find that higher and presumably pathological TNFa concentrations do not act just permissively but instead become direct and potent triggers of glutamate release from astrocytes, leading to a strong enhancement of excitatory synaptic activity. The TNFa action, like the one observed upon P2Y1R activation, is mediated by pre-synaptic NMDA receptors, but in this case the effect is long-lasting, and not reversible. Moreover, I report that a necessary molecular target for this action of TNFa is TNFR1, one of the two specific receptors for the cytokine, as I found that TNFa was unable to induce synaptic potentiation when applied in slices from TNFR1 knock-out (Tnfrlv") mice. I then created a double transgenic mouse model where TNFR1 is knocked out in all cells but can be re-expressed selectively in astrocytes and I report that activation of the receptors in these cells is sufficient to reestablish TNFa-dependent long-lasting potentiation of synaptic activity in the TNFR1 knock-out mice.I therefore discovered that TNFa is a primary molecule displaying both permissive and instructive roles on gliotransmission controlling synaptic functions. These reports might have profound implications for the understanding of both physiological and pathological processes associated to TNFa production, including inflammatory processes in the brain.RÉSUMÉLes astrocytes sont les cellules les plus abondantes du cerveau humain. Outre leur rôle bien établi dans le support métabolique de l'activité neuronale, d'autres fonctions importantes, et parfois inattendues de ces cellules ont été mises en lumière au cours de ces dernières années. Les astrocytes entourent étroitement les synapses de leurs fins processus qui expriment fortement les transporteurs du glutamate et permettent ainsi aux astrocytes de jouer un rôle critique dans l'élimination du glutamate de la fente synaptique. Néanmoins, les astrocytes semblent être capables de jouer un rôle plus intégratif en modulant l'activité synaptique, notamment par la libération de transmetteurs (gliotransmetteurs). Le gliotransmetteur le plus étudié est le glutamate qui est libéré par l'exocytose régulée de petites vésicules ressemblant aux vésicules synaptiques (SLMVs) via un mécanisme dépendant du calcium.Les résultats présentés dans cette thèse permettent une avancée significative dans la compréhension du mode de communication de ces cellules et de leur implication dans la transmission de l'information synaptique dans l'hippocampe, notamment des synapses excitatrices des cellules granulaires du gyrus dentelé. J'ai pu montrer que le « facteur de nécrose tumorale alpha » (TNFa), une cytokine communément associée au système immunitaire, est aussi fondamentale pour la communication entre astrocyte et synapse. Lorsqu'un niveau constitutif très bas de TNFa est présent, l'activation des récepteurs purinergiques P2Y1 (des récepteurs couplés à protéine G) produit une augmentation locale de calcium (mesurée en microscopie bi-photonique) dans l'astrocyte. Cette dernière déclenche ensuite une libération de glutamate par les astrocytes conduisant à l'activation de récepteurs NMDA présynaptiques et à une augmentation de l'activité synaptique. En revanche, dans la souris TNFa knock-out cette modulation de l'activité synaptique par les astrocytes n'est pas bien qu'ils présentent toujours une excitabilité calcique normale. Nous avons démontré que le TNFa contrôle spécifiquement l'exocytose régulée des SLMVs astrocytaires en permettant la fusion synchrone de ces vésicules et la libération de glutamate à destination des récepteurs neuronaux. Ainsi, nous avons, pour la première fois, prouvé que la modulation de l'activité synaptique par l'astrocyte nécessite, pour fonctionner correctement, des facteurs « permissifs » comme le TNFa, agissant sur le mode de sécrétion du glutamate astrocytaire.J'ai pu, en outre, démontrer que le TNFa, à des concentrations plus élevées (celles que l'on peut observer lors de conditions pathologiques) provoque une très forte augmentation de l'activité synaptique, agissant non plus comme simple facteur permissif mais bien comme déclencheur de la gliotransmission. Le TNFa provoque 1'activation des récepteurs NMD A pré-synaptiques (comme dans le cas des P2Y1R) mais son effet est à long terme et irréversible. J'ai découvert que le TNFa active le récepteur TNFR1, un des deux récepteurs spécifiques pour le TNFa. Ainsi, l'application de cette cytokine sur une tranche de cerveau de souris TNFR1 knock-out ne produit aucune modification de l'activité synaptique. Pour vérifier l'implication des astrocytes dans ce processus, j'ai ensuite mis au point un modèle animal doublement transgénique qui exprime le TNFR1 uniquement dans les astrocytes. Ce dernier m'a permis de prouver que l'activation des récepteurs TNFR1 astrocytaires est suffisante pour induire une augmentation de l'activité synaptique de manière durable.Nous avons donc découvert que le TNFa possède un double rôle, à la fois un rôle permissif et actif, dans le contrôle de la gliotransmission et, par conséquent, dans la modulation de l'activité synaptique. Cette découverte peut potentiellement être d'une extrême importance pour la compréhension des mécanismes physiologiques et pathologiques associés à la production du TNFa, en particulier lors de conditions inflammatoires.RÉSUMÉ GRAND PUBLICLes astrocytes représentent la population la plus nombreuse de cellules dans le cerveau humain. On sait, néanmoins, très peu de choses sur leurs fonctions. Pendant très longtemps, les astrocytes ont uniquement été considérés comme la colle du cerveau, un substrat inerte permettant seulement de lier les cellules neuronales entre elles. Il n'y a que depuis peu que l'on a découvert de nouvelles implications de ces cellules dans le fonctionnement cérébral, comme, entre autres, une fonction de support métabolique de l'activité neuronale et un rôle dans la modulation de la neurotransmission. C'est ce dernier aspect qui fait l'objet de mon projet de thèse.Nous avons découvert que l'activité des synapses (régions qui permettent la communication d'un neurone à un autre) qui peut être potentialisée par la libération du glutamate par les astrocytes, ne peut l'être que dans des conditions astrocytaires très particulières. Nous avons, en particulier, identifié une molécule, le facteur de nécrose tumorale alpha (TNFa) qui joue un rôle critique dans cette libération de glutamate astrocytaire.Le TNFa est surtout connu pour son rôle dans le système immunitaire et le fait qu'il est massivement libéré lors de processus inflammatoires. Nous avons découvert qu'en concentration minime, correspondant à sa concentration basale, le TNFa peut néanmoins exercer un rôle indispensable en permettant la communication entre l'astrocyte et le neurone. Ce mode de fonctionnement est assez probablement représentatif d'un processus physiologique qui permet d'intégrer la communication astrocyte/neurone au fonctionnement général du cerveau. Par ailleurs, nous avons également démontré qu'en quantité plus importante, le TNFa change son mode de fonctionnement et agit comme un stimulateur direct de la libération de glutamate par l'astrocyte et induit une activation persistante de l'activité synaptique. Ce mode de fonctionnement est assez probablement représentatif d'un processus pathologique.Nous sommes également arrivés à ces conclusions grâce à la mise en place d'une nouvelle souche de souris doublement transgéniques dans lesquelles seuls les astrocytes (etnon les neurones ou les autres cellules cérébrales) sont capables d'être activés par le TNFa.
Resumo:
Synaptic plasticity involves a complex molecular machinery with various protein interactions but it is not yet clear how its components give rise to the different aspects of synaptic plasticity. Here we ask whether it is possible to mathematically model synaptic plasticity by making use of known substances only. We present a model of a multistable biochemical reaction system and use it to simulate the plasticity of synaptic transmission in long-term potentiation (LTP) or long-term depression (LTD) after repeated excitation of the synapse. According to our model, we can distinguish between two phases: first, a "viscosity" phase after the first excitation, the effects of which like the activation of NMDA receptors and CaMKII fade out in the absence of further excitations. Second, a "plasticity" phase actuated by an identical subsequent excitation that follows after a short time interval and causes the temporarily altered concentrations of AMPA subunits in the postsynaptic membrane to be stabilized. We show that positive feedback is the crucial element in the core chemical reaction, i.e. the activation of the short-tail AMPA subunit by NEM-sensitive factor, which allows generating multiple stable equilibria. Three stable equilibria are related to LTP, LTD and a third unfixed state called ACTIVE. Our mathematical approach shows that modeling synaptic multistability is possible by making use of known substances like NMDA and AMPA receptors, NEM-sensitive factor, glutamate, CaMKII and brain-derived neurotrophic factor. Furthermore, we could show that the heteromeric combination of short- and long-tail AMPA receptor subunits fulfills the function of a memory tag.
Resumo:
The release of transmitters from glia influences synaptic functions. The modalities and physiological functions of glial release are poorly understood. Here we show that glutamate exocytosis from astrocytes of the rat hippocampal dentate molecular layer enhances synaptic strength at excitatory synapses between perforant path afferents and granule cells. The effect is mediated by ifenprodil-sensitive NMDA ionotropic glutamate receptors and involves an increase of transmitter release at the synapse. Correspondingly, we identify NMDA receptor 2B subunits on the extrasynaptic portion of excitatory nerve terminals. The receptor distribution is spatially related to glutamate-containing synaptic-like microvesicles in the apposed astrocytic processes. This glial regulatory pathway is endogenously activated by neuronal activity-dependent stimulation of purinergic P2Y1 receptors on the astrocytes. Thus, we provide the first combined functional and ultrastructural evidence for a physiological control of synaptic activity via exocytosis of glutamate from astrocytes.
Resumo:
Diverse sources of GABAergic inhibition are a major feature of cortical networks, but distinct inhibitory input systems have not been systematically characterized in the thalamus. Here, we contrasted the properties of two independent GABAergic pathways in the posterior thalamic nucleus of rat, one input from the reticular thalamic nucleus (nRT), and one "extrareticular" input from the anterior pretectal nucleus (APT). The vast majority of nRT-thalamic terminals formed single synapses per postsynaptic target and innervated thin distal dendrites of relay cells. In contrast, single APT-thalamic terminals formed synaptic contacts exclusively via multiple, closely spaced synapses on thick relay cell dendrites. Quantal analysis demonstrated that the two inputs displayed comparable quantal amplitudes, release probabilities, and multiple release sites. The morphological and physiological data together indicated multiple, single-site contacts for nRT and multisite contacts for APT axons. The contrasting synaptic arrangements of the two pathways were paralleled by different short-term plasticities. The multisite APT-thalamic pathway showed larger charge transfer during 50-100 Hz stimulation compared with the nRT pathway and a greater persistent inhibition accruing during stimulation trains. Our results demonstrate that the two inhibitory systems are morpho-functionally distinct and suggest and that multisite GABAergic terminals are tailored for maintained synaptic inhibition even at high presynaptic firing rates. These data explain the efficacy of extrareticular inhibition in timing relay cell activity in sensory and motor thalamic nuclei. Finally, based on the classic nomenclature and the difference between reticular and extrareticular terminals, we define a novel, multisite GABAergic terminal type (F3) in the thalamus.
Resumo:
Drosophila neuromuscular junctions (NMJs) represent a powerful model system with which to study glutamatergic synapse formation and remodeling. Several proteins have been implicated in these processes, including components of canonical Wingless (Drosophila Wnt1) signaling and the giant isoforms of the membrane-cytoskeleton linker Ankyrin 2, but possible interconnections and cooperation between these proteins were unknown. Here, we demonstrate that the heterotrimeric G protein Go functions as a transducer of Wingless-Frizzled 2 signaling in the synapse. We identify Ankyrin 2 as a target of Go signaling required for NMJ formation. Moreover, the Go-ankyrin interaction is conserved in the mammalian neurite outgrowth pathway. Without ankyrins, a major switch in the Go-induced neuronal cytoskeleton program is observed, from microtubule-dependent neurite outgrowth to actin-dependent lamellopodial induction. These findings describe a novel mechanism regulating the microtubule cytoskeleton in the nervous system. Our work in Drosophila and mammalian cells suggests that this mechanism might be generally applicable in nervous system development and function.
Resumo:
Two alloys, Fe80Nb10B10 and Fe70Ni14Zr6B10, were produced by mechanical alloying. The formation of thenanocrystallites (about 7-8 nm at 80h MA) was detected by X-ray diffraction. After milling for 80 h, differentialscanning calorimetry scans show low-temperature recovery processes and several crystallization processes related with crystal growth and reordering of crystalline phases. The apparent activation energy values are 315 ± 40 kJ mol–1 for alloy A, and 295 ± 20 kJ mol–1 and 320 ± 25 kJ mol–1 for alloy B. Furthermore, a melt-spun Fe-based ribbon was mechanically alloyed to obtain a powdered-like alloy. The increase of the rotation speed and the ball-to-powderweight ratio reduces the necessary time to obtain the powdered form
Resumo:
Le développement des cellules B est constitué d'une première phase qui se déroule dans la moelle en absence d'antigène et d'une deuxième phase qui se déroule dans les organes lymphoïdes secondaires et qui débute uniquement en présence d'antigène. Cette deuxième partie est extrêmement importante et doit être très bien régulée pour lutter efficacement contre les pathogènes, ainsi que pour éviter de nombreuses maladies de type auto-immunes. Ce travail est basé à l'origine sur l'étude de souris mutantes dans lesquelles une protéine des cellules T est modifiée, impliquant une très forte activation des cellules B en absence d'antigène et de manière non spécifique. Ces souris constituent donc un outil de travail très intéressant pour étudier tout d'abord le mécanisme aboutissant à l'activation des cellules B dans ce contexte particulier. De plus comme ces souris contiennent énormément de cellules sécrétant des anticorps, à savoir les plasmocytes, il est facile d'étudier leur phénotype. Cela nous a permis de démontrer qu'un récepteur membranaire, CD93 est exprimé à leur surface. Cette observation a ensuite été confirmée dans des souris normales, de type sauvage. L'utilisation de ce marqueur de surface nous a permis de caractériser plus en détail les étapes du développement des plasmocytes. De plus nous avons tenté de trouver la fonction jouée par cette molécule à la surface de ces cellules, en utilisant des souris dans lesquelles ce récepteur a été supprimé. Si les premières étapes de l'activation des cellules B étaient normales, ces souris n'étaient par contre pas capables de produire des anticorps à long-terme dans le sang. Nous avons pu montrer que la survie des plasmocytes en l'absence de CD93 est moins efficace dans la moelle, probablement du au fait qu'en absence de cette molécule, les plasmocytes ont plus de difficultés à adhérer dans ce que l'on appelle des niches de survie. Nous avons essayé ensuite de déterminer si CD93 peut être utilisé comme cible thérapeutique dans le cadre de maladies auto-immunes ou de lymphomes. Bien que CD93 soit exprimé à la surface des cellules d'intérêt dans les souris souffrant de lupus, il n'a pas été possible de les éliminer avec un anticorps dirigé contre CD93. De plus nous n'avons pas pu mettre en évidence l'expression de CD93 à la surface des plasmocytes humains induits in vitro. SUMMARY : Antigen dependent B cell activation is a key aspect of the adaptive immunity which is involved in the efficient response against pathogens, but also in vaccination and in numerous pathologies. The aim of this project was to investigate two key aspects of the late B cell development, namely the role of costimulatory molecules in the immunological synapse between T and B cells and the characterization of a new plasma cell marker, CD93. This work was initially based on the study of the LatY136F mutant mouse. The latter harbors a point mutation in the LAT adaptor protein which is involved in T cell receptor signaling. As a consequence of this mutation, CD4 T cells in the periphery expand strongly and are polarized in a TH2 manner leading to a normal but exaggerated B cell response. For this reason, these mice provide a useful tool to investigate different aspects of the late B cell development. The first part of the project was focused on the role played by costimulatory molecules in LotY136F CD4 T cell mediated B cell activation. In vitro studies showed that CD80/CD86, IL-4 and LFA-1 were required for LatY136FT cells to activate B cells whereas CD40 and IcosL were not necessary. In vivo we showed that CD80/CD86 was required for initial T cell expansion whereas CD40 and IcosL deficiency led to a less efficient B cell activation. The large amount of plasma cells present in LatY136F mice allows investigating in more details their phenotype and CD93 was found to be expressed on their surface, This observation was confirmed in wild type B cells activated either in vivo or in vitro with T-independent or T-dependent antigens. Moreover we found that CD93 expression can occur either before CD138/Blimp-1 induction or after, showing that two independent pathways can lead to the formation of CD93/CD138 double positive population, which was shown to be the more mature. Indeed, their phenotype correlated with modified transcriptional network, high isotype switched antibody secretion and cell cycle arrest. Analysis of CD93 deficient mice demonstrated that the initial B cell activation after immunization was normal, but also showed that these mice failed to maintain a high antibody secretion level at later time points both after primary and boost immunization. This was shown to be due to a less efficient survival of the long-lived plasma cells in the bone marrow niches, most likely related with a defective adhesion process in absence of CD93. We investigated the possibility to use CD93 as a target to treat plasma cell pathologies, but even if this molecule is expressed on cells of interest in the bone marrow of lupus mice, it was not possible to deplete them using anti-CD93 antibodies. Moreover we were not able to show its expression on the surface of in vitro activated B cells and multiple myeloma cell lines of human origin. In conclusion, our data helped understand both the mechanisms leading to the polyclonal B cell activation occurring in the LatY136F KI mouse and the role played by CD93 on the surface of plasma cells, which could potentially open the way to therapeutic application.
Resumo:
The kinetics of crystallization of four amorphous (or partially amorphous) melt spun Nd-Fe-B alloys induced by thermal treatment is studied by means of differential scanning calorimetry and scanning electron microscopy, In the range of temperatures explored experimentally, the crystallization process is thermally activated and generally proceeds in various stages. The Curie temperature and the crystallization behavior have been measured. The apparent activation energy of crystallization of most of the crystallization stages has been determined for each melt spun alloy. The explicit form of the kinetic equation that best describes the first stage of crystallization has been found. It follows in general the Johnson-Mehl-Avrami-Erofe'ev model, but clear deviations to that model occur for one alloy. Scanning electron microscopy demonstrates that preferentially hetereogeneous nucleation occurs at the ribbon surface which was in contact with the wheel. From crystallization kinetics results the lower part of the experimental time-temperature-transformation curves for all studied alloys are deduced and extrapolated to the high temperature limit of their range of validity, also deduced.
Resumo:
NdFeB melt-spun amorphous or partially amorphous alloys of four compositions were prepared. Their crystallization kinetics induced by thermal treatment was studied by differential scanning calorimetry and scanning and transmission electron microscopy. Scanning electron microscopy demonstrated that heterogeneous nucleation occurs preferentially at the ribbon surface which was in contact with the wheel. The explicit form of the kinetic equation that best describes the first stage of crystallization under high undercooling conditions was obtained for each alloy. From the crystallization results, the lower part of the experimental time-temperature-transformation curves was deduced for each alloy and extrapolated up to the high-temperature limit of their validity. Microstructural observations showed a typical size of the microcrystals obtained by heat treatment of ~100 nm. From the magnetic properties measured with a vibrating sample magnetometer, the same magnetic behavior of partially crystallized alloys is observed regardless of the temperature of annealing provided the same crystallization fraction, x, is achieved, at least for small values of x (typically ~10%).
Resumo:
BACKGROUND: Alpha-dystroglycan (alpha-DG) is a cell surface receptor providing a molecular link between the extracellular matrix (ECM) and the actin-based cytoskeleton. During its biosynthesis, alpha-DG undergoes specific and unusual O-glycosylation crucial for its function as a high-affinity cellular receptor for ECM proteins. METHODOLOGY/PRINCIPAL FINDINGS: We report that expression of functionally glycosylated alpha-DG during thymic development is tightly regulated in developing T cells and largely confined to CD4(-)CD8(-) double negative (DN) thymocytes. Ablation of DG in T cells had no effect on proliferation, migration or effector function but did reduce the size of the thymus due to a significant loss in absolute numbers of thymocytes. While numbers of DN thymocytes appeared normal, a marked reduction in CD4(+)CD8(+) double positive (DP) thymocytes occurred. In the periphery mature naïve T cells deficient in DG showed both normal proliferation in response to allogeneic cells and normal migration, effector and memory T cell function when tested in acute infection of mice with either lymphocytic choriomeningitis virus (LCMV) or influenza virus. CONCLUSIONS/SIGNIFICANCE: Our study demonstrates that DG function is modulated by glycosylation during T cell development in vivo and that DG is essential for normal development and differentiation of T cells.
Resumo:
The concept of tripartite synapse suggests that astrocytes make up a functional synapse with pre- and postsynaptic neuronal elements to modulate synaptic transmission through the regulated release of neuromodulators called gliotransmitters. Release of gliotransmitters such as glutamate or D-serine has been shown to depend on Ca21-dependent exocytosis. However, the origin (cytosolic versus vesicular) of the released gliotransmitter is still a matter of debate. The existence of Ca21-regulated exocytosis in astrocytes has been questioned mostly because the nature of secretory organelles which are loaded with gliotransmitters is unknown. Here we show the existence of a population of vesicles that uptakes and stores glutamate and D-serine in astrocytes which are present in situ. Immunoisolated glial organelles expressing synaptobrevin 2 (Sb2) display morphological and biochemical features very similar to synaptic vesicles. We demonstrate that these organelles not only contain and uptake glutamate but also display a glia-specific transport activity for D-serine. Furthermore, we report that the uptake of D-serine is energized by a H1-ATPase present on the immunoisolated vesicles and that cytosolic chloride ions modulate the uptake of D-serine. Finally, we show that serine racemase (SR), the synthesizing enzyme for D-serine, is anchored to the membrane of glial organelles allowing a local and efficient concentration of the gliotransmitter to be transported. We conclude that vesicles in astrocytes do exist with the goal to store and release D-serine, glutamate and most likely other neuromodulators.
Resumo:
Fragile X syndrome (FXS) is characterized by intellectual disability and autistic traits, and results from the silencing of the FMR1 gene coding for a protein implicated in the regulation of protein synthesis at synapses. The lack of functional Fragile X mental retardation protein has been proposed to result in an excessive signaling of synaptic metabotropic glutamate receptors, leading to alterations of synapse maturation and plasticity. It remains, however, unclear how mechanisms of activity-dependent spine dynamics are affected in Fmr knockout (Fmr1-KO) mice and whether they can be reversed. Here we used a repetitive imaging approach in hippocampal slice cultures to investigate properties of structural plasticity and their modulation by signaling pathways. We found that basal spine turnover was significantly reduced in Fmr1-KO mice, but markedly enhanced by activity. Additionally, activity-mediated spine stabilization was lost in Fmr1-KO mice. Application of the metabotropic glutamate receptor antagonist α-Methyl-4-carboxyphenylglycine (MCPG) enhanced basal turnover, improved spine stability, but failed to reinstate activity-mediated spine stabilization. In contrast, enhancing phosphoinositide-3 kinase (PI3K) signaling, a pathway implicated in various aspects of synaptic plasticity, reversed both basal turnover and activity-mediated spine stabilization. It also restored defective long-term potentiation mechanisms in slices and improved reversal learning in Fmr1-KO mice. These results suggest that modulation of PI3K signaling could contribute to improve the cognitive deficits associated with FXS.
Resumo:
The neurofilament (NF) proteins (NF-H, NF-M, and NF-L for high, medium, and low molecular weights) play a crucial role in the organization of neuronal shape and function. In a preliminary study, the abundance of total NF-L was shown to be decreased in brains of opioid addicts. Because of the potential relevance of NF abnormalities in opioid addiction, we quantitated nonphosphorylated and phosphorylated NF in postmortem brains from 12 well-defined opioid abusers who had died of an opiate overdose (heroin or methadone). Levels of NF were assessed by immunoblotting techniques using phospho-independent and phospho-dependent antibodies, and the relative (% changes in immunoreactivity) and absolute (changes in ng NF/microg total protein) amounts of NF were calculated. Decreased levels of nonphosphorylated NF-H (42-32%), NF-M (14-9%) and NF-L (30-29%) were found in the prefrontal cortex of opioid addicts compared with sex, age, and postmortem delay-matched controls. In contrast, increased levels of phosphorylated NF-H (58-41%) and NF-M (56-28%) were found in the same brains of opioid addicts. The ratio of phosphorylated to nonphosphorylated NF-H in opioid addicts (3.4) was greater than that in control subjects (1.6). In the same brains of opioid addicts, the levels of protein phosphatase of the type 2A were found unchanged, which indicated that the hyperphosphorylation of NF-H is not the result of a reduced dephosphorylation process. The immunodensities of GFAP (the specific glial cytoskeletol protein), alpha-internexin (a neuronal filament related to NF-L) and synaptophysin (a synapse-specific protein) were found unchanged, suggesting a lack of gross changes in glial reaction, other intermediate filaments of the neuronal cytoskeletol, and synaptic density in the prefrontal cortex of opioid addicts. These marked reductions in total NF proteins and the aberrant hyperphosphorylation of NF-H in brains of opioid addicts may play a significant role in the cellular mechanisms of opioid addiction.