944 resultados para rhoptry-associated protein 2
Resumo:
The CLAVATA1 (CLV1) gene encodes a putative receptor kinase required for the proper balance between cell proliferation and differentiation in Arabidopsis shoot and flower meristems. Impaired CLV1 signaling results in masses of undifferentiated cells at the shoot and floral meristems. Although many putative receptor kinases have been identified in plants, the mechanism of signal transduction mediated by plant receptor-like kinases is largely unknown. One potential effector of receptor kinase signaling is kinase-associated protein phosphatase (KAPP), a protein that binds to multiple plant receptor-like kinases in a phosphorylation-dependent manner. To examine a possible role for KAPP in CLV1-dependent plant development, the interaction of CLV1 and KAPP was investigated in vitro and in vivo. KAPP binds directly to autophosphorylated CLV1 in vitro and co-immunoprecipitates with CLV1 in plant extracts derived from meristematic tissue. Reduction of KAPP transcript accumulation in an intermediate clv1 mutant suppresses the mutant phenotype, and the degree of suppression is inversely correlated with KAPP mRNA levels. These data suggest that KAPP functions as a negative regulator of CLV1 signaling in plant development. This may represent a general model for the interaction of KAPP with receptor kinases.
Resumo:
The junction-associated protein zonula occludens-1 (ZO-1) is a member of a family of membrane-associated guanylate kinase homologues thought to be important in signal transduction at sites of cell-cell contact. We present evidence that under certain conditions of cell growth, ZO-1 can be detected in the nucleus. Two different antibodies against distinct portions of the ZO-1 polypeptide reveal nuclear staining in subconfluent, but not confluent, cell cultures. An exogenously expressed, epitope-tagged ZO-1 can also be detected in the nuclei of transfected cells. Nuclear accumulation can be stimulated at sites of wounding in cultured epithelial cells, and immunoperoxidase detection of ZO-1 in tissue sections of intestinal epithelial cells reveals nuclear labeling only along the outer tip of the villus. These results suggest that the nuclear localization of ZO-1 is inversely related to the extent and/or maturity of cell contact. Since cell-cell contacts are specialized sites for signaling pathways implicated in growth and differentiation, we suggest that the nuclear accumulation of ZO-1 may be relevant for its suggested role in membrane-associated guanylate kinase homologue signal transduction.
Resumo:
The 5' noncoding region of poliovirus RNA contains an internal ribosome entry site (IRES) for cap-independent initiation of translation. Utilization of the IRES requires the participation of one or more cellular proteins that mediate events in the translation initiation reaction, but whose biochemical roles have not been defined. In this report, we identify a cellular RNA binding protein isolated from the ribosomal salt wash of uninfected HeLa cells that specifically binds to stem-loop IV, a domain located in the central part of the poliovirus IRES. The protein was isolated by specific RNA affinity chromatography, and 55% of its sequence was determined by automated liquid chromatography-tandem mass spectrometry. The sequence obtained matched that of poly(rC) binding protein 2 (PCBP2), previously identified as an RNA binding protein from human cells. PCBP2, as well as a related protein, PCBP1, was over-expressed in Escherichia coli after cloning the cDNAs into an expression plasmid to produce a histidine-tagged fusion protein. Specific interaction between recombinant PCBP2 and poliovirus stem-loop IV was demonstrated by RNA mobility shift analysis. The closely related PCBP1 showed no stable interaction with the RNA. Stem-loop IV RNA containing a three nucleotide insertion that abrogates translation activity and virus viability was unable to bind PCBP2.
Resumo:
We previously reported that KIF3A and KIF3B form a heterodimer that functions as a microtubule-based fast anterograde translocator of membranous organelles. We have also shown that this KIF3A/3B forms a complex with other associated polypeptides, named kinesin superfamily-associated protein 3 (KAP3). In the present study, we purified KAP3 protein by immunoprecipitation using anti-KIF3B antibody from mouse testis. Microsequencing was carried out, and we cloned the full-length KAP3 cDNA from a mouse brain cDNA library. Two isoforms of KAP3 exist [KAP3A (793 aa) and KAP3B (772 aa)], generated by alternative splicing in the carboxyl terminus region. Their amino acid sequences have no homology with those of any other known proteins, and prediction of their secondary structure indicated that almost the entire KAP3 molecule is alpha-helical. We produced recombinant KAP3 and KIF3A/3B using a baculovirus-Sf9 expression system. A reconstruction study in Sf9 cells revealed that KAP3 is a globular protein that binds to the tail domain of KIF3A/3B. The immunolocalization pattern of KAP3 was similar to that of KIF3A/3B in nerve cells. In addition, we found that KAP3 does not affect the motor activity of KIF3A/3B. KAP3 was associated with a membrane-bound form of KIF3A/3B in a fractional immunoprecipitation experiment, and since the KIF3 complex was found to bind to membranous organelles in an EM study, KAP3 may regulate membrane binding of the KIF3 complex.
Resumo:
Huntington disease stems from a mutation of the protein huntingtin and is characterized by selective loss of discrete neuronal populations in the brain. Despite a massive loss of neurons in the corpus striatum, NO-generating neurons are intact. We recently identified a brain-specific protein that associates with huntingtin and is designated huntingtin-associated protein (HAP1). We now describe selective neuronal localizations of HAP1. In situ hybridization studies reveal a resemblance of HAP1 and neuronal nitric oxide synthase (nNOS) mRNA localizations with dramatic enrichment of both in the pedunculopontine nuclei, the accessory olfactory bulb, and the supraoptic nucleus of the hypothalamus. Both nNOS and HAP1 are enriched in subcellular fractions containing synaptic vesicles. Immunocytochemical studies indicate colocalizations of HAP1 and nNOS in some neurons. The possible relationship of HAP1 and nNOS in the brain is reminiscent of the relationship of dystrophin and nNOS in skeletal muscle and suggests a role of NO in Huntington disease, analogous to its postulated role in Duchenne muscular dystrophy.
Resumo:
Microtubules play an important role in establishing cellular architecture. Neuronal microtubules are considered to have a role in dendrite and axon formation. Different portions of the developing and adult brain microtubules are associated with different microtubule-associated proteins (MAPs). The roles of each of the different MAPs are not well understood. One of these proteins, MAP1B, is expressed in different portions of the brain and has been postulated to have a role in neuronal plasticity and brain development. To ascertain the role of MAP1B, we generated mice which carry an insertion in the gene by gene-targeting methods. Mice which are homozygous for the modification die during embryogenesis. The heterozygotes exhibit a spectrum of phenotypes including slower growth rates, lack of visual acuity in one or both eyes, and motor system abnormalities. Histochemical analysis of the severely affected mice revealed that their Purkinje cell dendritic processes are abnormal, do not react with MAP1B antibodies, and show reduced staining with MAP1A antibodies. Similar histological and immunochemical changes were observed in the olfactory bulb, hippocampus, and retina, providing a basis for the observed phenotypes.
Resumo:
A 70-kDa protein was specifically induced in Escherichia coli when the culture temperature was shifted from 37 to 15 degrees C. The protein was identified to be the product of the deaD gene (reassigned csdA) encoding a DEAD-box protein. Furthermore, after the shift from 37 to 15 degrees C, CsdA was exclusively localized in the ribosomal fraction and became a major ribosomal-associated protein in cells grown at 15 degrees C. The csdA deletion significantly impaired cell growth and the synthesis of a number of proteins, specifically the derepression of heat-shock proteins, at low temperature. Purified CsdA was found to unwind double-stranded RNA in the absence of ATP. Therefore, the requirement for CsdA in derepression of heat-shock protein synthesis is a cold shock-induced function possibly mediated by destabilization of secondary structures previously identified in the rpoH mRNA.
Resumo:
The pathogenic human parvovirus B19 is an autonomously replicating virus with a remarkable tropism for human erythroid progenitor cells. Although the target cell specificity for B19 infection has been suggested to be mediated by the erythrocyte P-antigen receptor (globoside), a number of nonerythroid cells that express this receptor are nonpermissive for B19 replication. To directly test the role of expression from the B19 promoter at map unit 6 (B19p6) in the erythroid cell specificity of B19, we constructed a recombinant adeno-associated virus 2 (AAV), in which the authentic AAV promoter at map unit 5 (AAVp5) was replaced by the B19p6 promoter. Although the wild-type (wt) AAV requires a helper virus for its optimal replication, we hypothesized that inserting the B19p6 promoter in a recombinant AAV would permit autonomous viral replication, but only in erythroid progenitor cells. In this report, we provide evidence that the B19p6 promoter is necessary and sufficient to impart autonomous replication competence and erythroid specificity to AAV in primary human hematopoietic progenitor cells. Thus, expression from the B19p6 promoter plays an important role in post-P-antigen receptor erythroid-cell specificity of parvovirus B19. The AAV-B19 hybrid vector system may also prove to be useful in potential gene therapy of human hemoglobinopathies.
Resumo:
Fas, a member of the tumor necrosis factor receptor family, can induce apoptosis when activated by Fas ligand binding or anti-Fas antibody crosslinking. Genetic studies have shown that a defect in Fas-mediated apoptosis resulted in abnormal development and function of the immune system in mice. A point mutation in the cytoplasmic domain of Fas (a single base change from T to A at base 786), replacing isoleucine with asparagine, abolishes the signal transducing property of Fas. Mice homozygous for this mutant allele (lprcg/lprcg mice) develop lymphadenopathy and a lupus-like autoimmune disease. Little is known about the mechanism of signal transduction in Fas-mediated apoptosis. In this study, we used the two-hybrid screen in yeast to isolate a Fas-associated protein factor, FAF1, which specifically interacts with the cytoplasmic domain of wild-type Fas but not the lprcg-mutated Fas protein. This interaction occurs not only in yeast but also in mammalian cells. When transiently expressed in L cells, FAF1 potentiated Fas-induced apoptosis. A search of available DNA and protein sequence data banks did not reveal significant homology between FAF1 and known proteins. Therefore, FAF1 is an unusual protein that binds to the wild type but not the inactive point mutant of Fas. FAF1 potentiates Fas-induced cell killing and is a candidate signal transducing molecule in the regulation of apoptosis.
Resumo:
Growth factor-binding protein 2 (Grb2) is an adaptor protein that links tyrosine kinases to Ras. BCR-ABL is a tyrosine kinase oncoprotein that is implicated in the pathogenesis of Philadelphia chromosome (Ph1)-positive leukemias. Grb2 forms a complex with BCR-ABL and the nucleotide exchange factor Sos that leads to the activation of the Ras protooncogene. In this report we demonstrate that Grb2 mutant proteins lacking amino- or carboxyl-terminal src homology SH3 domains suppress BCR-ABL-induced Ras activation and reverse the oncogenic phenotype. The Grb2 SH3-deletion mutant proteins bind to BCR-ABL and do not impair tyrosine kinase activity. Expression of the Grb2 SH3-deletion mutant proteins in BCR-ABL-transformed Rat-1 fibroblasts and in the human Ph1-positive leukemic cell line K562 inhibits their ability to grow as foci in soft agar and form tumors in nude mice. Furthermore, expression of the Grb2 SH3-deletion mutants in K562 cells induced their differentiation. Because Ras plays an important role in signaling by receptor and nonreceptor tyrosine kinases, the use of interfering mutant Grb2 proteins may be applied to block the proliferation of other cancers that depend in part on activated tyrosine kinases for growth.
Resumo:
We present evidence that the microtubule-associated protein tau is present in oligodendrocytes (OLGs), the central nervous system cells that make myelin. By showing that tau is distributed in a pattern similar to that of myelin basic protein, our results suggest a possible involvement of tau in some aspect of myelination. Tau protein has been identified in OLGs in situ and in vitro. In interfascicular OLGs, tau localization, revealed by monoclonal antibody Tau-5, was confined to the cell somata. However, in cultured ovine OLGs with an exuberant network of processes, tau was detected in cell somata, cellular processes, and membrane expansions at the tips of these processes. Moreover, in such cultures, tau appeared localized adjacent to or coincident with myelin basic protein in membrane expansions along and at the ends of the cellular processes. The presence of tau mRNA was documented using fluorescence in situ hybridization. The distribution of the tau mRNA was similar to that of the tau protein. Western blot analysis of cultured OLGs showed the presence of many tau isoforms. Together, these results demonstrate that tau is a genuine oligodendrocyte protein and pave the way for determining its functional role in these cells.
Resumo:
Nuclear hormone receptors are transcription factors that require multiple protein-protein interactions to regulate the expression of their target genes. Using the yeast two-hybrid system, we identified a protein, thyroid hormone receptor uncoupling protein (TRUP), that specifically interacts with a region of the human thyroid hormone receptor (TR) consisting of the hinge region and the N-terminal portion of the ligand binding domain in a hormone-independent manner. Interestingly, TRUP inhibits transactivation by TR and the retinoic acid receptor but has no effect on the estrogen receptor or the retinoid X receptor in mammalian cells. We also demonstrate that TRUP exerts its action on TR and retinoic acid receptor by interfering with their abilities to interact with their DNA. TRUP represents a type of regulatory protein that modulates the transcriptional activity of a subclass of the nuclear hormone receptor superfamily by preventing interaction with their genomic response elements.
Resumo:
Multidrug-resistance-associated protein (MRP) is a plasma membrane glycoprotein that can confer multidrug resistance (MDR) by lowering intracellular drug concentration. Here we demonstrate that depletion of intracellular glutathione by DL-buthionine (S,R)-sulfoximine results in a complete reversal of resistance to doxorubicin, daunorubicin, vincristine, and VP-16 in lung carcinoma cells transfected with a MRP cDNA expression vector. Glutathione depletion had less effect on MDR in cells transfected with MDR1 cDNA encoding P-glycoprotein and did not increase the passive uptake of daunorubicin by cells, indicating that the decrease of MRP-mediated MDR was not due to nonspecific membrane damage. Glutathione depletion resulted in a decreased efflux of daunorubicin from MRP-transfected cells, but not from MDR1-transfected cells, suggesting that glutathione is specifically required for the export of drugs from cells by MRP. We also show that MRP increases the export of glutathione from the cell and this increased export is further elevated in the presence of arsenite. Our results support the hypothesis that MRP functions as a glutathione S-conjugate carrier.
Resumo:
Transcription factor TFIIIB plays a central role in transcription initiation by RNA polymerase III on genes encoding tRNA, 5S rRNA, and other small structural RNAs. We report the purification of a human TFIIIB-derived complex containing only the TATA-binding polypeptide (TBP) and a 90-kDa subunit (TFIIIB90) and the isolation of a cDNA clone encoding the 90-kDa subunit. The N-terminal half of TFIIIB90 exhibits sequence similarity to the yeast TFIIIB70 (BRF) and the class II transcription factor TFIIB and interacts weakly with TBP. The C-terminal half of TFIIIB90 contains a high-mobility-group protein 2 (HMG2)-related domain and interacts strongly with TBP. Recombinant TFIIIB90 plus recombinant human TBP substitute for human TFIIIB in a complementation assay for transcription of 5S, tRNA, and VA1 RNA genes, and both the TFIIB-related domain and the HMG2-related domain are required for this activity. TFIIIB90 is also required for transcription of human 7SK and U6 RNA genes by RNA polymerase III, but apparently within a complex distinct from the TBP/TFIIIB90 complex.